精英家教网 > 高中数学 > 题目详情
已知曲线C1的参数方程是
x=2cosθ
y=2+2sinθ
(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=-4cosθ.
(1)求曲线C1与C2交点的极坐标;
(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:(1)把
x=2cosθ
y=2+2sinθ
消去θ化为普通方程,由极坐标方程ρ=-4cosθ化为直角坐标方程得x2+y2=-4x,联立求出交点的直角坐标,化为极坐标得答案;
(2)画出两圆,数形结合得到A,C1,C2,B依次排列且共线时|AB|最大,求出|AB|及O到AB的距离代入三角形的面积公式得答案.
解答: 解:(1)由
x=2cosθ
y=2+2sinθ
,得
x=2cosθ
y-2=2sinθ
,两式平方作和得:x2+(y-2)2=4,即x2+y2-4y=0;
由ρ=-4cosθ,得ρ2=-4ρcosθ,即x2+y2=-4x.
两式作差得:x+y=0,代入C1得交点为(0,0),(-2,2).
其极坐标为(0,0),(2
2
4
);
(2)如图,

由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.
此时|AB|=2
2
+4
,O到AB的距离为
2

∴△OAB的面积为S=
1
2
×(2
2
+4)×
2
=2+2
2
点评:本题考查了参数方程化普通方程,极坐标与直角坐标的互化,考查了数形结合的解题思想方法,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=1,a2=3,前n项和为Sn,且
Sn+1-Sn
Sn-Sn-1
=
2an+1
an
,(n≥2,n∈N),设b1=1,bn+1=log2(an+1)+bn
(Ⅰ)判断数量{an+1}是否为等比数列,并证明你的结论;
(Ⅱ)设Cn=
4
bn+1-1
n+1
anan+1
,证明
n
k=1
C
k
<1

(Ⅲ)对于(Ⅰ)中数列{an},若数列{ln}满足ln=log2(an+1)(n∈N),在每两个lk与lk+1之间都插入2k-1(k=1,2,3,…,k∈N)个2,使得数列{ln}变成了一个新的数列{tp},(p∈N)试问:是否存在正整数m,使得数列{tp}的前m项的和Tm=2011?如果存在,求出m的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

过曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F作曲线C2:x2+y2=a2的切线,设切点为M,延长FM交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若点M为线段FN的中点,则曲线C1的离心率为(  )
A、
5
B、
5
2
C、
5
+1
D、
5
+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

sin3的取值所在的范围是(  )
A、(
2
2
,1)
B、(0,
2
2
C、(-
2
2
,0)
D、(-1,-
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆ρ=2cosθ的半径为(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
4
+
y2
3
=1
的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式组
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,若目标函数z=y-ax去的最大值时的唯一最优解为(1,3),则实数a的取值范围为(  )
A、(1,+∞)
B、[1,+∞)
C、(0,1)
D、(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义符号函数sgn(x)=
1,x>0
0,x=0
-1,x<0
,则下列结论中错误的是(  )
A、x=sgn(x)•|x|
B、sgn(x)=
x
|x|
(x≠0)
C、sgn(x•y)=sgn(x)•sgn(y)
D、sgn(x+y)=sgn(x)+sgn(y)

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(-2,-1)且在两坐标轴上的截距互为相反数的直线方程为
 

查看答案和解析>>

同步练习册答案