精英家教网 > 高中数学 > 题目详情
5、在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且保持AP⊥BD1,则动点P的轨迹为(  )
分析:如图,BD1⊥面ACB1,又点P在侧面BCC1B1及其边界上运动,故点P的轨迹为面ACB1与面BCC1B1的交线段CB1
解答:解:如图,连接AC,AB1,B1C,在正方体ABCD-A1B1C1D1中,
有BD1⊥面ACB1,又点P在侧面BCC1B1及其边界上运动,
∴故点P的轨迹为面ACB1与面BCC1B1的交线段CB1
故选A.
点评:本题考查线面垂直的判定与正方体的几何特征,对依据图象进行正确分析判断线面的位置关系的能力要求较高.其主要功能就是提高答题者对正方体特征的掌握与空间几何体的立体感.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案