精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2(
1
2
-
1
ax+1
)(a>0,且a≠1).
(1)求函数y=f(x)的反函数y=f-1(x);
(2)判定f-1(x)的奇偶性;
(3)解不等式f-1(x)>1.
(1)化简,得f(x)=
ax-1
ax+1

设y=
ax-1
ax+1
,则ax=
1+y
1-y

∴x=loga
1+y
1-y

∴所求反函数为
y=f-1(x)=loga
1+x
1-x
(-1<x<1).
(2)∵f-1(-x)=loga
1-x
1+x
=loga
1+x
1-x
-1=-loga
1+x
1-x
=-f-1(x),
∴f-1(x)是奇函数.
(3)loga
1+x
1-x
>1.
当a>1时,
原不等式?
1+x
1-x
>a?
(1+a)x+1-a
x-1
<0.
a-1
a+1
<x<1.
当0<a<1时,原不等式
1+x
1-x
<a
1+x
1-x
>0

解得
x<
a-1
1+a
或x>1
-1<x<1.

∴-1<x<
a-1
1+a

综上,当a>1时,所求不等式的解集为(
a-1
a+1
,1);
当0<a<1时,所求不等式的解集为(-1,
a-1
a+1
).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案