精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥P﹣ABC中,△PAB和△CAB都是以AB为斜边的等腰直角三角形.
(1)证明:AB⊥PC;
(2)若AB=2PC= ,求三棱锥P﹣ABC的体积.

【答案】
(1)证明:取AB的中点G,连结PG,CG.

∵△PAB和△CAB都是以AB为斜边的等腰直角三角形,

∴PG⊥AB,CG⊥AB,

∵PG∩CG=G,且PG平面PCG,CG平面PCG,

∴AB⊥平面PCG,

又∵PC平面PCG,

∴AB⊥PC


(2)解:在等腰直角三角形PAB中,AB= ,G是斜边AB的中点,

∴PG= AB= ,同理CG=

∵PC= ,∴△PCG是等边三角形,

∴SPCG= PCCGsin60°= =

∵AB⊥平面PCG,

∴VPABC= SPCGAB= =


【解析】(1)根据线面垂直的性质定理证明AB⊥平面PCG,然后根据线面垂直的性质即可证明AB⊥PC.(2)根据三棱锥的体积公式先求出底面积和高,进行求解即可.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)其中ω>0,|φ|<
(1)若cos cosφ﹣sin sinφ=0.求φ的值;
(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于 ,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象象左平移m个单位所对应的函数是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=x+b与曲线x= 恰有一个公共点,则b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在任意三角形ABC内任取一点Q,使SABQ SABC的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)

如图,四棱锥P-ABCD中,侧面PAD为等比三角形且垂直于底面ABCD EPD的中点.

1)证明:直线 平面PAB

2)点M在棱PC 上,且直线BM与底面ABCD所成锐角为 ,求二面角M-AB-D的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= cosx(sinx+cosx). (Ⅰ)若0<α< ,且sinα= ,求f(α)的值;
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差d>0的等差数列{an}中,a1=10,且a1 , 2a2+2,5a3成等比数列.
(1)求公差d及通项an
(2)设Sn= + +…+ ,求证:Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在原点,半径为的圆是椭圆准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

1)求椭圆的方程和其准圆方程;

2)点是椭圆准圆上的动点,过点作椭圆的切线准圆于点.

当点准圆轴正半轴的交点时,求直线的方程并证明

求证:线段的长为定值.

查看答案和解析>>

同步练习册答案