精英家教网 > 高中数学 > 题目详情

【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.

(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

附参考公式及数据:,其中.

0.05

0.01

3.841

6.635

【答案】(1)列联表见解析;有的把握认为选择科目与性别有关.(2)分布列见解析;

【解析】

1)根据分层抽样,求得抽到男生、女生的人数,得到的列联表,求得的值,即可得到结论;

2)求得这4名女生中选择地理的人数可为,求得相应的概率,得到分布列,利用期望的公式计算,即可求解.

(1)由题意,抽取到男生人数为,女生人数为

所以列联表为:

选择“物理”

选择“地理”

总计

男生

45

10

55

女生

25

20

45

总计

70

30

100

所以

所以有的把握认为选择科目与性别有关.

(2)从45名女生中分层抽样抽9名女生,所以这9名女生中有5人选择物理,4人选择地理,9名女生中再选择4名女生,则这4名女生中选择地理的人数可为

设事件发生概率为

所以的分布列为:

0

1

2

3

4

期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】12分)设数列{an}是公比为正数的等比数列,a1=2a3﹣a2=12

1)求数列{an}的通项公式;

2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:

分组

频数

频率

[0,1)

10

0.10

[1,2)


0.20

[2,3)

30

0.30

[3,4)

20


[4,5)

10

0.10

[5,6]

10

0.10

合计

100

1.00

1)求右表中的值;

2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。

  1. 求椭圆的方程;
  2. 设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了分析在一次数学竞赛中甲、乙两个班的数学成绩,分别从甲、乙两个班中随机抽取了10个学生的成绩,成绩的茎叶图如下:

)根据茎叶图,计算甲班被抽取学生成绩的平均值及方差

)若规定成绩不低于90分的等级为优秀,现从甲、乙两个班级所抽取成绩等级为优秀的学生中,随机抽取2人,求这两个人恰好都来自甲班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1A2A3A4A5A6和4名女志愿者B1B2B3B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.

(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。

(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,常数.

1)当时,解不等式

2)当时,判断并用定义法证明函数在的单调性;

3)讨论函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别是abc,已知Ab2a2c2.

(1)tanC的值;

(2)若△ABC的面积为3,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为上一点,直线与抛物线交于两点,若,则( )

A. B. 8 C. 16 D.

查看答案和解析>>

同步练习册答案