精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=mx-$\frac{m-1}{x}$-lnx,m∈R.函数g(x)=$\frac{1}{xcosθ}$+lnx在[1,+∞)上为增函数,且0∈[0,$\frac{π}{2}$)
(I)当m=3时,求f(x)在点P(1,f(1))处的切线方程;
(Ⅱ)求θ的取值;
(Ⅲ)若h(x)=f(x)-g(x)在其定义域上为单调函数,求m的取值范围.

分析 (Ⅰ)求出函数的导数,计算f′(1),f(1),求出切线方程即可;
(Ⅱ)求出g(x)的导数,问题转化为$\frac{1}{cosθ}≤x$在x∈[1,+∞)上恒成立,求出θ的值即可;
(Ⅲ)求出h(x)的导数,问题转化为mx2-2x+m≥0或mx2-2x+m≤0在x∈(0,+∞)上恒成立,分离参数,结合基本不等式的性质求出m的范围即可.

解答 解:(Ⅰ)当m=3时,$f(x)=3x-\frac{2}{x}-lnx$,$f'(x)=3+\frac{2}{x^2}-\frac{1}{x}$…(1分)
所求切线斜率k=f'(1)=4,f(1)=1,
∴y-1=4(x-1),
即切线方程为4x-y-3=0…(3分)
(Ⅱ)∵g(x)在q上为增函数,
∴$g'(x)=-\frac{1}{cosθ}\frac{1}{x^2}+\frac{1}{x}≥0$在x∈[1,+∞)上恒成立,
即$\frac{1}{cosθ}≤x$在x∈[1,+∞)上恒成立,…(5分)
∴$\frac{1}{cosθ}≤1$∵$θ∈[{0,\frac{π}{2}})$,
∴cosθ≥1,又∵cosθ≤1,∴cosθ=1,
∴θ=0…(7分)
(Ⅲ)由(Ⅱ)知∵$h(x)=f(x)-g(x)=mx-\frac{m-1}{x}-lnx-(\frac{1}{x}+lnx)=mx-\frac{m}{x}-2lnx$,
∴$h'(x)=\frac{{m{x^2}-2x+m}}{x^2}$…(8分)
∵h(x)在(0,+∞)上为单调函数,
∴mx2-2x+m≥0或mx2-2x+m≤0在x∈(0,+∞)上恒成立,…(9分)
即x∈(0,+∞)时$m≥\frac{2x}{{{x^2}+1}}或m≤\frac{2x}{{{x^2}+1}}$恒成立,…(10分)
设$F(x)=\frac{2x}{{{x^2}+1}}=\frac{2}{{x+\frac{1}{x}}}(x>0)$,
∵$x+\frac{1}{x}≥2$(当且仅当x=1时“等号”成立)∴0<F(x)≤1…(11分)
∴m≥1或m≤0,
即m取值范围为(-∞,0]∪[1,+∞)…(12分)

点评 本题考查了曲线的切线方程问题,考查三角函数的性质,考查函数的单调性问题以及函数恒成立问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,若点D满足$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,则$\overrightarrow{AD}$用$\overrightarrow{b}$、$\overrightarrow{c}$表示的结果为$\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow{b}$+$\frac{2}{3}$$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,与函数y=$\frac{1}{\sqrt{x+1}}$+$\frac{1}{\sqrt{x(x+2)}}$有相同定义域的是(  )
A.f(x)=|x|B.f(x)=$\frac{1}{x}$C.f(x)=lnxD.f(x)=ex

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x2-6x+4lnx,则函数f(x)的增区间为(  )
A.(-∞,1),(2,+∞)B.(-∞,0),(1,2)C.(0,1),(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=x+\frac{a}{x}+lnx(a∈R)$
(1)求函数f(x)的单调区间;
(2)若关于x的函数$g(x)=\frac{lnx}{x^2}-f(x)+lnx+2e$有且只有一个零点,求a的值(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点A(2,1),离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点R(x0,y0)在D:y2=2px上,以R为切点的D的切线的斜率为$\frac{P}{{y}_{0}}$,过Γ外一点A(不在x轴上)作Γ的切线AB、AC,点B、C为切点,作平行于BC的切线MN(切点为D),点M、N分别是与AB、AC的交点(如图).
(1)用B、C的纵坐标s、t表示直线BC的斜率;
(2)设三角形△ABC面积为S,若将由过Γ外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做“切线三角形”,如△AMN,再由M、N作“切线三角形”,并依这样的方法不断作切线三角形…,试利用“切线三角形”的面积和计算由抛物线及BC所围成的阴影部分的面积T.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=a(x-1)2+lnx+1.
(I)若函数f(x)在区间[2,4]上是减函数,求实数a的取值范围;
(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在$\left\{\begin{array}{l}{x≥1}\\{y-x≤0}\end{array}\right.$所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,菱形ABCD的棱长为2,∠BAD=60°,CP⊥底面ABCD,E为边AD的中点.
(1)求证:平面PBE⊥平面BCP;
(2)当直线AP与底面ABCD所成的角为30°时,求二面角A-PB-C的余弦值.

查看答案和解析>>

同步练习册答案