精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=x2-6x+4lnx,则函数f(x)的增区间为(  )
A.(-∞,1),(2,+∞)B.(-∞,0),(1,2)C.(0,1),(2,+∞)D.(1,2)

分析 先确定函数的定义域然后求导数f′(x),在函数的定义域内解不等式f′(x)>0,解得的区间就是单调增区间.

解答 解:∵f(x)=x2-6x+4lnx,x>0,
f′(x)=2x-6+$\frac{4}{x}$=$\frac{2(x-1)(x-2)}{x}$,
令f′(x)>0,解得:x>2或0<x<1,
故f(x)在(0,1),(2,+∞)递增,
故选:C.

点评 本题主要考查了利用导数研究函数的单调性,单调性是函数的重要性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(sinx+cosx)2+2cos2x-2.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设点P是曲线y=$\frac{1}{3}$x3-2x2+(4-$\sqrt{3}$)x上任意一点,P点处切线的倾斜角为α,则α的取值范围是(  )
A.[$\frac{2}{3}$π,π)B.($\frac{π}{2}$,$\frac{5}{6}$π]C.[0,$\frac{π}{2}$)∪[$\frac{5}{6}$π,π)D.[0,$\frac{π}{2}$)∪[$\frac{2}{3}$π,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面内,设三角形ABC的边长为a,b,c,面积为S,则其内切圆半径r可由关系式S=$\frac{1}{2}$(a+b+c)r求出,请类比此方法解决下述问题:在空间中,已知四面体ABCD中,AB=8,AC=BC=5,AD=BD=$\sqrt{41}$,CD=4,则此四面体内切球(位于四面体内且与各面相切的球)的半径R=$\frac{8}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(4,-x),则“x∈(0,2)”是“向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ax2-(b+1)xlnx-b,曲线y=f(x)在点P(e,f(e))处的切线方程为2x+y=0.
(1)求f(x)的解析式;
(2)研究函数f(x)在区间(0,e4]内的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=mx-$\frac{m-1}{x}$-lnx,m∈R.函数g(x)=$\frac{1}{xcosθ}$+lnx在[1,+∞)上为增函数,且0∈[0,$\frac{π}{2}$)
(I)当m=3时,求f(x)在点P(1,f(1))处的切线方程;
(Ⅱ)求θ的取值;
(Ⅲ)若h(x)=f(x)-g(x)在其定义域上为单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线C:y2=2px(p>0)上的一点M的横坐标为3,焦点为F,且|MF|=4.直线l:y=2x-4与抛物线C交于A,B两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若P是x轴上一点,且△PAB的面积等于9,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是一几何体的三视图,则该几何体的表面积为(  )
A.64+24πcm2B.64+36πcm2C.48+36πcm2D.48+24πcm2

查看答案和解析>>

同步练习册答案