精英家教网 > 高中数学 > 题目详情
13.已知抛物线C:y2=2px(p>0)上的一点M的横坐标为3,焦点为F,且|MF|=4.直线l:y=2x-4与抛物线C交于A,B两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若P是x轴上一点,且△PAB的面积等于9,求点P的坐标.

分析 (Ⅰ)代入计算即可得出答案;
(Ⅱ)先求出AB的长度,再根据三角形的面积公式,即可求得点P的坐标.

解答 解:(Ⅰ)依题意得,$\frac{P}{2}$+3=4,∴p=2,
∴抛物线方程为C:y2=4x;
(Ⅱ)将直线方程与抛物线的方程进行联立,设A(x1,y1),B(x2,y2),
可得,y2-2y-8=0,∴A(1,-2),B(4,4),
∴|AB|=$\sqrt{{3}^{2}+{6}^{2}}$=3$\sqrt{5}$,
设P(a,0),P到直线AB的距离为d,则d=$\frac{|2a-0-4|}{\sqrt{{2}^{2}+(-1)^{2}}}$=$\frac{2|a-2|}{\sqrt{5}}$,
又S△ABP=$\frac{1}{2}$|AB|•d,
代入计算可得,|a-2|=3,
∴a=5或a=-1,
故点P的坐标为(5,0)和(-1,0)

点评 本题考查抛物线的定义与方程,考查直线与抛物线的位置关系,考查三角形面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.将函数f(x)=sin(2x-$\frac{π}{4}$)的图象上所有点的横坐标缩小为原来的$\frac{1}{2}$倍(纵坐标不变),得到g(x)的图象,则g(x)=sin(4x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x2-6x+4lnx,则函数f(x)的增区间为(  )
A.(-∞,1),(2,+∞)B.(-∞,0),(1,2)C.(0,1),(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点A(2,1),离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点R(x0,y0)在D:y2=2px上,以R为切点的D的切线的斜率为$\frac{P}{{y}_{0}}$,过Γ外一点A(不在x轴上)作Γ的切线AB、AC,点B、C为切点,作平行于BC的切线MN(切点为D),点M、N分别是与AB、AC的交点(如图).
(1)用B、C的纵坐标s、t表示直线BC的斜率;
(2)设三角形△ABC面积为S,若将由过Γ外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做“切线三角形”,如△AMN,再由M、N作“切线三角形”,并依这样的方法不断作切线三角形…,试利用“切线三角形”的面积和计算由抛物线及BC所围成的阴影部分的面积T.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=loga(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a+b的值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=a(x-1)2+lnx+1.
(I)若函数f(x)在区间[2,4]上是减函数,求实数a的取值范围;
(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在$\left\{\begin{array}{l}{x≥1}\\{y-x≤0}\end{array}\right.$所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=60°,AP=AC=AD=2,E为CD的中点,M在AB上,且$\overrightarrow{AM}$=2$\overrightarrow{MB}$.
(I)求证:EM∥平面PAD;
(Ⅱ)求平面PAD与平面PBC所成锐二面角的余弦值;
(Ⅲ) 点F是线段PD上异于两端点的任意一点,若满足异面直线EF与AC所成角45°,求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如表提供了甲产品的产量x(吨)与利润y(万元)的几组对照数据.
x3456
y2.5344.5
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)计算相关指数R2的值,并判断线性模型拟合的效果.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

同步练习册答案