·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÖªÉè³öÖ±Ïß·½³Ì£¬ÓÉÇÐÏßбÂʵ͍Òå¼´¿É±íʾ³öÖ±ÏßBCµÄбÂÊ£»
£¨2£©ÇóµÃÇÐÏßµÄбÂÊ£¬¿ÉµÃDµÄ×ø±ê£¬ÇóµÃÖ±ÏßBCµÄ·½³Ì£¬ÔËÓÃÖеã×ø±ê¹«Ê½¿ÉµÃA¹ØÓÚDµÄ¶Ô³ÆµãÔÚÖ±ÏßBCÉÏ£¬ÇóµÃDΪAEµÄÖе㣬¸ù¾ÝMNΪÈý½ÇÐÎABCµÄÖÐλÏߣ¬ÇÒEΪBCµÄÖе㣬DΪMNµÄÖе㣬ÇóµÃÈý½ÇÐÎABCµÄÃæ»ý£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ýÖ®±ÈÓë¶ÔÓ¦±ßµÄ±ÈµÄ¹ØÏµ£¬¿ÉµÃÓÉÅ×ÎïÏßÍâ×÷³öµÄ¡°ÇÐÏßÈý½ÇÐΡ±µÄÃæ»ý¹¹³ÉÒÔ$\frac{1}{4}$SΪÊ×Ï$\frac{1}{4}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÔËÓÃÎÞÇîµÝËõµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬¿ÉµÃËùÓÐÃæ»ýºÍ£¬¼´¿ÉµÃµ½ËùÇóÃæ»ýT£®
½â´ð ½â£º£¨1£©ÉèÇÐÏß·½³ÌΪy-y0=$\frac{p}{{y}_{0}}$£¨x-x0£©£¬
kBC=$\frac{{y}_{B}-{y}_{C}}{{x}_{B}-{x}_{C}}$=$\frac{2p}{s+t}$£¬
£¨2£©ÉèD£¨¦Ì£¬v£©£¬ÔòMN¡ÎBC£¬
¡à$\frac{p}{v}$=$\frac{2p}{s+t}$£¬£¨s£¬tΪB£¬CµÄ×Ý×ø±ê£©£¬
v=$\frac{s+t}{2}$D£¨$\frac{£¨s+t£©^{2}}{8p}$£¬$\frac{s+t}{2}$£©£¬
ÉèA£¨a£¬b£©ÀûÓÃÇÐÏß·½³ÌµÃ£º
$\left\{\begin{array}{l}{b-t=\frac{p}{t}£¨a-\frac{{t}^{2}}{2p}£©}\\{b-s=\frac{p}{s}£¨a-\frac{{s}^{2}}{2p}£©}\end{array}\right.$¼´$\left\{\begin{array}{l}{bt=ap+\frac{{t}^{2}}{2}}\\{bt=ap-\frac{{s}^{2}}{2}}\end{array}\right.$£¬Á½Ê½Ïà¼õµÃ£º
b=$\frac{t+s}{2}$£¬a=$\frac{st}{2p}$£¬A£¨$\frac{st}{2p}$£¬$\frac{t+s}{2}$£©£¬
ÓÉÇ°Ãæ¼ÆËã¿ÉÖª£ºADƽÐÐÓÚºáÖᣬ¿ÉµÃyE=$\frac{t+s}{2}$£¬
BC£ºy-t=$\frac{2p}{s+t}$£¨x-$\frac{{t}^{2}}{2p}$£©£¬½«yE=$\frac{t+s}{2}$£¬´úÈëxE=$\frac{{s}^{2}+{t}^{2}}{4p}$£¬
ÓÉxA+xE=$\frac{st}{2p}$+$\frac{{s}^{2}+{t}^{2}}{4p}$=$\frac{£¨s+t£©^{2}}{4p}$=2xD£¬
ËùÒÔDΪAEµÄÖе㣻
É裺S¡÷AMN=R£¬ÓÉÉÏ¿ÉÖªR=$\frac{1}{4}$S¡÷ABC=$\frac{S}{4}$£¬
ÓÉM£¬NÈ·¶¨µÄÈ·¶¨µÄÇÐÏßÈý½ÇÐεÄÃæ»ýΪ$\frac{1}{4}$¡Á$\frac{R}{2}$=$\frac{R}{8}$£¬
ºóÒ»¸öÇÐÏßÈý½ÇÐεÄÃæ»ýÊÇǰһÇÐÏßÈý½ÇÐÎÃæ»ýµÄ$\frac{1}{8}$£¬
Óɴ˼ÌÐøÏÂÈ¥¿ÉµÃËãʽ£º
S¡÷ABC=S=T+R+2$\frac{R}{8}$+4$\frac{R}{64}$+8$\frac{R}{512}$+¡+£¬
=T+R+$\frac{R}{4}$+$\frac{R}{16}$+$\frac{R}{64}$+¡£¬
¡àT=S-$\frac{R}{1-\frac{1}{4}}$=S-$\frac{4}{3}$R=$\frac{2}{3}$S£®
µãÆÀ ±¾Ì⿼²éÖ±ÏߺÍÅ×ÎïÏßµÄλÖùØÏµ£¬Ö÷ÒªÊÇÏàÇеÄÌõ¼þ£¬¿¼²éÖ±ÏßµÄбÂʺͷ½³ÌµÄÔËÓã¬Í¬Ê±¿¼²éÈý½ÇÐεÄÃæ»ýµÄÇ󷨣¬×¢ÒâÔËÓÃÈý½ÇÐÎÃæ»ýÖ®±ÈÓë¶ÔÓ¦±ßµÄ±ÈµÄ¹ØÏµ£¬¿¼²éÔËËãÄÜÁ¦£¬¾ßÓÐÒ»¶¨µÄÄѶȣ¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ö±½ÇÈý½ÇÐÎ | B£® | µÈ±ßÈý½ÇÐÎ | C£® | ¶Û½ÇÈý½ÇÐÎ | D£® | µÈÑüÖ±½ÇÈý½ÇÐÎ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| x | 4 | 5 | 6 |
| y | 8 | 6 | 7 |
| A£® | 1 | B£® | $\frac{3}{2}$ | C£® | $\frac{4}{5}$ | D£® | $\frac{5}{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | $\sqrt{2}$ | C£® | 4 | D£® | 2$\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | $\frac{4\sqrt{2}}{3}$ | C£® | $\frac{4\sqrt{3}}{3}$ | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com