精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.
(1)求四棱锥P-ABCD的体积V;(2)求证:PB⊥DM;(3)求截面ADMN的面积.

(1)解:由AD=AB=2BC=2,得底面直角梯形ABCD的面积
S==3,
由PA⊥底面ABCD,得四棱锥P-ABCD的高h=PA=2,
所以四棱锥P-ABCD的体积V=Sh=×3×2=2. …(4分)
(2)证明:因为N是PB的中点,PA=PB,所以AN⊥PB. …(5分)

由PA⊥底面ABCD,得PA⊥AD,…(6分)
又∠BAD=90°,即BA⊥AD,
∴AD⊥平面PAB,所以AD⊥PB,…(8分)
∴PB⊥平面ADMN,
∴PB⊥DM. …(10分)
(3)由M,N分别为PC,PB的中点,得MN∥BC,且MN=BC=
又AD∥BC,故MN∥AD,
由(2)得AD⊥平面PAB,又AN?平面PAB,故AD⊥AN,
∴四边形ADMN是直角梯形,
在Rt△PAB中,PB==2
AN=PB=
∴截面ADMN的面积S=(MN+AD)×AN=. …(14分)
分析:(1)由已知中PA=AD=AB=2BC=2,可求出底面ABCD的面积,由PA垂直于底面ABCD,可得PA即为棱锥的高,代入棱锥体积公式,可得答案.
(2)由PA=AB,N为PB中点,可得AN⊥PB,由A点三棱相互垂直,可得AD⊥平面PAB,进而AD⊥PB,结合线面垂直的判定定理可得PB⊥平面ANMD,进而得到PB⊥DM;
(3)由已知及(2)中结论,可得截面ADMN为直角梯形,求出上下底及高,代入梯形面积公式,可得答案.
点评:本题考查的知识点是空间中直线与直线之间的位置关系,棱锥的体积,(1)的关键是计算出棱锥的底面面积及高,(2)的关键是证明 得PB⊥平面ANMD,(3)的关键是判断出截面的形状.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案