精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1-|x-1|,x∈(-∞,2)
1
2
f(x-2)
,x∈[2,+∞)
,则函数F(x)=xf(x)-1的零点个数为(  )
A、4B、5C、6D、7
分析:求函数F(x)=xf(x)-1的零点个数,我们可以转化为求函数y=f(x)与函数y=
1
x
图象交点的个数,根据函数y=f(x)的解析式,我们在同一坐标系中分别画出两个函数图象,由图象即可求出两个函数的交点个数,即函数F(x)=xf(x)-1的零点个数.
解答:解:∵f(x)=
1-|x-1|,x∈(-∞,2)
1
2
f(x-2)
,x∈[2,+∞)
,则函数F(x)=xf(x)-1的零点个数等于
函数y=f(x)与函数y=
1
x
图象交点的个数,
在同一坐标系中画出两个函数图象如下图所示:
精英家教网
由图可知函数y=f(x)与函数y=
1
x
图象共有6个交点
故函数F(x)=xf(x)-1的零点个数为6个,
故选C
点评:本题考查的知识点是函数零点的判定定理,其中将求函数零点的问题转化为求两个函数图象交点的问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案