精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和满足an+1=
1
3
Sn,且a1=
1
4
(n∈N*
(1)求数列{an}的通项公式;
(2)bn=nan,求数列{bn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)利用地推关系证明数列是等比数列,然后求出等比数列的通项公式.
(2)先构造数列然后利用乘公比错位相减法求数列的和,进一步求出结果.
解答: 解:(1)已知an+1=
1
3
Sn

则:an=
1
3
Sn-1

①-②得:an+1-an=
1
3
an

整理得:
an+1
an
=
4
3
(常数)
所以:{an}是以a1=
1
4
为首项
4
3
为公比的等比数列.
an=
1
4
(
4
3
)
n-1

(2)由(1)得:an=
1
4
(
4
3
)
n-1

则:bn=nan=
n
4
(
4
3
)n-1
=
1
4
[n•(
4
3
)n-1]

cn=n•(
4
3
)
n-1

则Sn=c1+c2+…+cn=1•(
4
3
)0+2•(
4
3
)1+…+n•
(
4
3
)n-1

4
3
Sn=1•(
4
3
)1+2(
4
3
)2
+…+n•(
4
3
)n

所以:③-④得:
1-
4
3
)Sn
=Sn=
1-(
4
3
)n
1-
4
3
-n•(
4
3
)n

解得:Sn=9+(3n-9)(
4
3
)n

所以:Tn=b1+b2+…+bn=
1
4
Sn
=
9
4
+
(3n-9)(
4
3
)n
4
点评:本题考查的知识要点:利用递推关系式求数列的通项公式,构造新数列然后利用错位相减法求数列的和.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式|x-2|-|x-1|≤m的解集为R,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列集合表示方法正确的是(  )
A、{1,3,3}
B、{全体实数}
C、{2,4}
D、不等式x2-1>2的解集是{x2-1>0}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示为函数f(x)=2sin(ωx+φ)(ω>0,
π
2
≤φ≤π)的部分图象,其中A,B分别是图中的最高点和最低点,且AB=5,那么ω+φ的值=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥O-ABC中M、N分别是OA、BC的中点,G是△ABC的重心,用基向量
OA
OB
OC
表示
MG
OG

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两个顶点A,B分别为椭圆x2+5y2=5的左,右焦点,且三角形三内角A,B,C满足sinB-sinA=
1
2
sinC,
(1)求|AB|;
(2)求顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB是抛物线y2=2px(p>0)上的两点,且满足OA⊥OB.
(1)求证:AB两点的横坐标之积,纵坐标之积都为定值;
(2)求证:直线AB过定点;
(3)求AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法不正确的是(  )
A、0∈N
B、-5∈Z
C、π∈Q
D、-
3
∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=log2(8-x2),则y的值域为
 

查看答案和解析>>

同步练习册答案