精英家教网 > 高中数学 > 题目详情
如图所示为函数f(x)=2sin(ωx+φ)(ω>0,
π
2
≤φ≤π)的部分图象,其中A,B分别是图中的最高点和最低点,且AB=5,那么ω+φ的值=
 
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:图表型,三角函数的图像与性质
分析:先确定函数的周期,由图可知AB=5,AB间的纵向距离为4,故可由勾股定理计算AB间的横向距离,即半个周期,进而得ω值,再利用函数图象过点(0,1),且此点在减区间上,代入函数解析式即可求出φ值,故可计算ω+φ的值.
解答: 解:由图可知函数的振幅为2,半周期为AB间的横向距离,
T
2
=
52-42
=3,
∴T=6,即
ω
=6,
∴ω=
π
3

由图象知函数过点(0,1),
∴1=2sinφ,
∴φ=2kπ+
π
6
,k∈Z,
π
2
≤φ≤π,
∴φ=
6

故ω+φ=
6

故答案为:
6
点评:本题考查了三角函数的图象和性质,由y=Asin(ωx+φ)的部分图象确定其解析式的方法,三角函数周期,初相的意义,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,BC=2
3
,D,E分别为边AC,AB上的中点,|BD|+|CE|=6,BD与CE交于点G,以直线BC为x轴,边BC的垂直平分线为y轴建立直角坐标系,记动点G形成的曲线为C
(1)求曲线C的方程;
(2)P,Q为曲线C上的两动点,且OP⊥OQ
①求证:点O到直线PQ的距离为定值;②求|PQ|min

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1
(1)求证:AD1∥平面BDC1
(2)求证:平面AB1D1∥平面BDC1

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x||x-2|≤2},B={x|
x
x+1
>1},则∁R(A∩B)等于(  )
A、{x|0≤x≤4}B、R
C、{x|x<-1}D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|1<ax<2(a≥0)},B={x|-1<x<1},是否存在实数a满足A⊆B,若存在,求出a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,B(-1,0),C(1,0),a,b,c为A,B,C所对的三条边,若b,a,c成等差数列,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和满足an+1=
1
3
Sn,且a1=
1
4
(n∈N*
(1)求数列{an}的通项公式;
(2)bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(0,-1,1),
b
=(2,2,1),计算:
(1)|
a
|,|
b
|,|-3
a
|,|2
a
-
b
|;
(2)cos<
a
-
b
>;
(3)2
a
-
b
在-3
a
上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)的定义域为(0,+∞),且对任意的x,y∈(0,+∞)都有f(xy)=f(x)+f(y)成立,当x>1时,f(x)>0.
(1)判断f(x)的单调性;
(2)设f(3)=1,解不等式f(x)>f(x-1)+2.

查看答案和解析>>

同步练习册答案