精英家教网 > 高中数学 > 题目详情
已知△ABC的两个顶点A,B分别为椭圆x2+5y2=5的左,右焦点,且三角形三内角A,B,C满足sinB-sinA=
1
2
sinC,
(1)求|AB|;
(2)求顶点C的轨迹方程.
考点:轨迹方程,正弦定理
专题:圆锥曲线的定义、性质与方程
分析:(1)椭圆x2+5y2=5化为
x2
5
+y2
=1.可得a2=5,b=1,c2=4.即可得到A(-2,0),B(2,0),|AB|.
(2)由sinB-sinA=
1
2
sinC,由正弦定理可得:|CA|-|CB|=
1
2
|AB|=2<|AB|.即可得到顶点C的轨迹是以A,B为焦点的双曲线的右支.
解答: 解:(1)椭圆x2+5y2=5化为
x2
5
+y2
=1.
可得a2=5,b=1,c2=4.
A(-2,0),B(2,0),|AB|=4.
(2)∵sinB-sinA=
1
2
sinC,
由正弦定理可得:|CA|-|CB|=
1
2
|AB|=2<|AB|.
∴顶点C的轨迹是以A,B为焦点的双曲线的右支.
其方程为x2-
y2
3
=1(x≥1).
点评:本题考查了椭圆的标准方程、双曲线的标准方程、正弦定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从数字1,2,3,…,10中,按由小到大的顺序取出a1、a2、a3,且a2-a1≥2,a3-a2≥2,则不同的取法有(  )
A、20种B、35种
C、56种D、60种

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x||x-2|≤2},B={x|
x
x+1
>1},则∁R(A∩B)等于(  )
A、{x|0≤x≤4}B、R
C、{x|x<-1}D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,B(-1,0),C(1,0),a,b,c为A,B,C所对的三条边,若b,a,c成等差数列,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和满足an+1=
1
3
Sn,且a1=
1
4
(n∈N*
(1)求数列{an}的通项公式;
(2)bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

点p(x,y)满足5
(x-1)2+(y-2)2
=|3x-4y+5|,则点p的轨迹是(  )
A、直线B、椭圆
C、双曲线D、抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(0,-1,1),
b
=(2,2,1),计算:
(1)|
a
|,|
b
|,|-3
a
|,|2
a
-
b
|;
(2)cos<
a
-
b
>;
(3)2
a
-
b
在-3
a
上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=3n-1,数列{bn}满足b1=1,bn=3bn-1+an(n≥2),记数列{bn}的前n项和为Tn
(1)证明{an}为等比数列;
(2)求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在塔底的水平面上某点测得塔顶的仰角为30°,由此点向塔沿直线行走20米,测得塔顶的仰角为45°,则塔高是
 
米.

查看答案和解析>>

同步练习册答案