如图,在三棱锥中,平面,.
(Ⅰ)求证:;
(Ⅱ)设分别为的中点,点为△内一点,且满足,
求证:∥面;
(Ⅲ)若,,求二面角的余弦值.
(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)
解析试题分析:(Ⅰ)因为AC和PB是异面直线,所以可以采用线面垂直得线线垂直的方法证,即先平面。要证平面需证面内的两条相交线PA和AB都和AC垂直。为已知条件证PA和AC垂直依据是线面垂直得线线垂直。(Ⅱ)(法一空间向量法)由题意可以点A为坐标原点,以AC,AB,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系。分别设出AB,AC,AP的三边长,故可得点A,点B点C点P的坐标,因为点D为PA中点,即可得到点D的坐标,根据得到点G的坐标,即可求出坐标和平面PBC的一个法向量的坐标,用向量数量积公式可求得,即,因为平面,所以∥平面.(法二一般方法)由可知,G为三角形重心。设AB中点为E,所以G在OE上,根据中位线可得∥,连结并延长交于,连。因为∥,且E为AB中点,所以G为AF中点,所以∥,内线外线平行所以得线面平行。问题得证。(Ⅲ)采用空间向量法,由(Ⅰ)可知是面PAB的一个法向量。先求两个法向量所成的角。两个法向量所成的角与二面角相等或互补。由观察可知此二面角为锐二面角,所以余弦值为正值。
试题解析:证明:(Ⅰ)因为平面,平面,
所以.
又因为,且,
所以平面.
又因为平面,
所以. 4分
(Ⅱ)
解法1:因为平面,所以,.又因为,
所以建立如图所示的空间直角坐标系.
设,,,
则,,,
,.
又因为,
所以.
于是,
,.
设平面的一个法向量
,则有
即
不妨设
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为矩形,AD 平面ABE,AE=EB=BC=2,F为CE上的点.且BF 平面ACE.
(1)求证:平面ADE平面BCE;
(2)求四棱锥E-ABCD的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN平面DAE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图:长方形所在平面与正所在平面互相垂直,分别为的中点.
(Ⅰ)求证:平面;
(Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点
的位置,并证明你的结论;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,矩形中,,,、分别为、边上的点,且,,将沿折起至位置(如图2所示),连结、,其中.
(Ⅰ)求证:平面;
(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位置;若不存在,请说明理由.
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com