精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,平面.

(Ⅰ)求证:
(Ⅱ)设分别为的中点,点为△内一点,且满足
求证:∥面
(Ⅲ)若,求二面角的余弦值.

(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)

解析试题分析:(Ⅰ)因为AC和PB是异面直线,所以可以采用线面垂直得线线垂直的方法证,即先平面。要证平面需证面内的两条相交线PA和AB都和AC垂直。为已知条件证PA和AC垂直依据是线面垂直得线线垂直。(Ⅱ)(法一空间向量法)由题意可以点A为坐标原点,以AC,AB,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系。分别设出AB,AC,AP的三边长,故可得点A,点B点C点P的坐标,因为点D为PA中点,即可得到点D的坐标,根据得到点G的坐标,即可求出坐标和平面PBC的一个法向量的坐标,用向量数量积公式可求得,即,因为平面,所以∥平面.(法二一般方法)由可知,G为三角形重心。设AB中点为E,所以G在OE上,根据中位线可得,连结并延长交,连。因为,且E为AB中点,所以G为AF中点,所以,内线外线平行所以得线面平行。问题得证。(Ⅲ)采用空间向量法,由(Ⅰ)可知是面PAB的一个法向量。先求两个法向量所成的角。两个法向量所成的角与二面角相等或互补。由观察可知此二面角为锐二面角,所以余弦值为正值。
试题解析:证明:(Ⅰ)因为平面平面
所以
又因为,且
所以平面
又因为平面
所以.                                       4分
(Ⅱ)
解法1:因为平面,所以.又因为
所以建立如图所示的空间直角坐标系




又因为
所以
于是

设平面的一个法向量
,则有
 
不妨设

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为矩形,AD 平面ABE,AE=EB=BC=2,F为CE上的点.且BF 平面ACE.

(1)求证:平面ADE平面BCE;
(2)求四棱锥E-ABCD的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,分别为的中点.

(1)求证:EF∥平面;
(2)若平面平面,且º,求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:长方形所在平面与正所在平面互相垂直,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点 
的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)在线段上是否存在点使得平面?若存在,求出点的位置;若不存在,请说明理由.
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥,底面为平行四边形,侧面底面.已知为线段的中点.

(Ⅰ)求证:平面
(Ⅱ)求面与面所成二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱中,已知平面平面,.

(1)求证:
(2)若为棱的中点,求证:平面.

查看答案和解析>>

同步练习册答案