精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,,D为AC的中点,.

(1)求证:平面平面
(2)求二面角的余弦值.

(1)证明过程详见解析;(2).

解析试题分析:本题主要以三棱锥为几何背景考查线线垂直、平行的判定,线面垂直,面面垂直的判定以及用空间向量法求二面角的余弦值,考查空间想象能力和计算能力.第一问,根据已知条件,取中点,连结,得出,再利用,根据线面垂直的判定证出平面,从而得到垂直平面内的线,再利用为中位线,得出平面,最后利用面面垂直的判定证明平面垂直平面;第二问,由第一问知两两互相垂直,所以建立空间直角坐标系,得出点,以及坐标,利用已知先求出平面与平面的法向量,再利用夹角公式求出夹角的余弦值.
试题解析:(Ⅰ)取中点为,连结
因为,所以
,所以平面
因为平面,所以.        3分
由已知,,又,所以
因为,所以平面
平面,所以平面⊥平面.      5分
(Ⅱ)由(Ⅰ)知,两两互相垂直.

为坐标原点,的方向为轴的方向,为单位长,建立如图所示的空间直角坐标系
由题设知

是平面的法向量,则
,可取.      9分
同理可取平面的法向量
.         11分
所以二面角的余弦值为.        12分
考点:1.线面垂直的判

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形,,且

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一点,使直线与平面所成的角是?若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面.

(Ⅰ)求证:
(Ⅱ)设分别为的中点,点为△内一点,且满足
求证:∥面
(Ⅲ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:如图,等腰直角三角形的直角边,沿其中位线将平面折起,使平面⊥平面,得到四棱锥,设的中点分别为.

(1)求证:四点共面;
(2)求证:平面平面
(3)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面四边形是菱形,,是边长为2的等边三角形,,.

(Ⅰ)求证:底面
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)在线段上是否存在一点,使得∥平面?如果存在,求的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:平面
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,⊥面,为线段上的点.

(Ⅰ)证明:⊥面 ;
(Ⅱ)若的中点,求所成的角的正切值;
(Ⅲ)若满足⊥面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在长方体中,为线段中点.

(1)求直线与直线所成的角的余弦值;
(2)若,求二面角的大小;
(3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案