精英家教网 > 高中数学 > 题目详情
已知椭圆,圆,过椭圆上任一与顶点不重合的点P引圆O的两条切线,切点分别为A,B,直线AB与x轴,y轴分别交于点M,N,则_____________
.所以.所以两点在直线上.所以.所以.
【考点】1.圆的切线方程.2.直线与椭圆的关系.3.归纳化归的思想.4.较强的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的右焦点为,且椭圆过点
(1)求椭圆的方程;
(2)设斜率为的直线与椭圆交于不同两点,以线段为底边作等腰三角形,其中顶点的坐标为,求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率为.斜率为的直线与椭圆交于AB两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2)求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,

(1)求椭圆E的方程;
(2)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1,C2. 设点P的轨迹为
(1)求C的方程;
(2)设直线与C交于A,B两点.问k为何值时?此时的值是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是正三角形,则这个椭圆的离心率是(     )
A.    B.    C.     D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点O和点F分别为椭圆=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(0,1)是椭圆上的一点,P点是椭圆上的动点,
则弦AP长度的最大值为(   )
A.B.2C.D.4

查看答案和解析>>

同步练习册答案