精英家教网 > 高中数学 > 题目详情
已知椭圆)的右焦点为,且椭圆过点
(1)求椭圆的方程;
(2)设斜率为的直线与椭圆交于不同两点,以线段为底边作等腰三角形,其中顶点的坐标为,求△的面积.
(1) ;(2)

试题分析:(1)要确定椭圆方程,要确定两个参数的值,因此需要两个条件,题中有焦点为
,又椭圆过点,代入方程又得到一个关于的等式,联立可解得;(2) 直线和圆锥曲线相交问题,一般都是设出直线方程,本题直线的方程可设为,代入椭圆方程得到关于的一元二次方程,再设交点为,则可得,而条件等腰三角形的应用方法是底边边上的中线就是此边上的高,即取中点为,则.由此可求得从而得到坐标,最终求得的面积.
试题解析:(1)由已知得,因为椭圆过点,所以   (2分)
解得                                (5分)
所以,椭圆的方程为.            (6分)
(2)设直线的方程为,              (1分)
 ① (2分)
因为直线与椭圆交于不同两点,所以△
所以.            (3分)
,则是方程①的两根,所以
的中点为,则, (4分)
因为是等腰三角形的底边,所以,向量是直线的一个法向量,
所以∥向量,即∥向量
所以,解得.    (5分)
此时方程①变为,解得,所以
到直线的距离, (7分)
所以△的面积.   (8分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心和抛物线的顶点均为原点的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在上各取两个点,将其坐标记录于下表中:


(1)求的标准方程;
(2)若交于C、D两点,的左焦点,求的最小值;
(3)点上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆的方程;
(2)已知直线与椭圆交于两点,试问,是否存在轴上的点,使得对任意的为定值,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点是椭圆的一个顶点,的长轴是圆的直径,是过点且互相垂直的两条直线,其中交圆两点,交椭圆于另一点.

(1)求椭圆的方程;
(2)求面积的最大值及取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且

(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左、右焦点分别为,点M在该椭圆上,且,则点M到y轴的距离为(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(已知双曲线的中心在坐标原点,焦点在轴上,A是右顶点,B是虚轴的上端点,F是左焦点,
当BF⊥AB时,此类双曲线称为“黄金双曲线”,其离心率为,类比“黄金双曲线”,推算出“黄金椭圆”(如图)的离心率=_________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆,圆,过椭圆上任一与顶点不重合的点P引圆O的两条切线,切点分别为A,B,直线AB与x轴,y轴分别交于点M,N,则_____________

查看答案和解析>>

同步练习册答案