精英家教网 > 高中数学 > 题目详情
如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且

(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
(1)(2)

试题分析:
(1)抛物线的方程已知,则可以求出右焦点的坐标为,则可以知道和直线CD的方程我饿哦x=1,联立直线与抛物线方程可以求出C,D两点的坐标,进而得到CD的长度,再联立直线与椭圆方程即可求出ST两点的坐标,进而得到ST的距离,利用条件建立关于的等式,与联立即可求出的值,进而得到椭圆的方程.
(2)因为直线l与椭圆有交点,所以直线l的斜率一定存在,则设出直线l的斜率得到直线l的方程,联立直线l与椭圆方程得到AB两点横纵坐标之间的韦达定理,即的值,再利用发解即可得到P点的坐标,因为P在椭圆上,代入椭圆得到直线斜率k与t的方程,,利用k的范围求解出函数的范围即可得到t的范围.
试题解析:
(1)设椭圆标准方程,由题意,抛物线的焦点为,.
因为,所以         2分
,又
所以椭圆的标准方程.         5分
(2)由题意,直线的斜率存在,设直线的方程为
消去,得,(*)
,则是方程(*)的两根,所以
①  7分
,由,得
,则点与原点重合,与题意不符,故
所以,  9分
因为点在椭圆上,所以
,即,
再由①,得.      13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的右焦点为,且椭圆过点
(1)求椭圆的方程;
(2)设斜率为的直线与椭圆交于不同两点,以线段为底边作等腰三角形,其中顶点的坐标为,求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,长轴的左右端点分别为
(1)求椭圆的方程;
(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切于点.

(1)求的值及椭圆的标准方程;
(2)设动点满足,其中M、N是椭圆上的点,为原点,直线OM与ON的斜率之积为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率为.斜率为的直线与椭圆交于AB两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2)求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(0,1)是椭圆上的一点,P点是椭圆上的动点,
则弦AP长度的最大值为(   )
A.B.2C.D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的右焦点为,椭圆轴正半轴交于点,与轴正半轴交于,且,则椭圆的方程为(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案