精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率,长轴的左右端点分别为
(1)求椭圆的方程;
(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.
(1);(2)存在,

试题分析:(1)由已知,得,再根据离心率求,进而求,进而根据焦点位置求椭圆方程;(2)联立直线方程和椭圆方程,得关于的一元二次方程,由题意,列方程得,同时可求出切点坐标,再求,设轴上存在满足条件的点,以为直径的圆恒过定点等价于,列方程得,由题意该方程与无关,故,从而求得点坐标,本题还可以先从特殊值入手,确定定点的坐标,再证明以为直径的圆恒过定点
试题解析:(1)由已知    2分

椭圆的方程为;    4分
(2),消去,得,则,可得,设切点,则,故,又由,得,设在上存在定点,使得以为直径的圆恒过定点,,即    10分

对满足恒成立,

故在轴上存在定点,使得以为直径的圆恒过定点.  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆的方程;
(2)已知直线与椭圆交于两点,试问,是否存在轴上的点,使得对任意的为定值,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点是椭圆的一个顶点,的长轴是圆的直径,是过点且互相垂直的两条直线,其中交圆两点,交椭圆于另一点.

(1)求椭圆的方程;
(2)求面积的最大值及取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且

(1)求椭圆的标准方程;
(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:上,且椭圆的离心率e =

(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左焦点为与过原点的直线相交于两点,连接,若,则椭圆的离心率
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知离心率为的双曲线和离心率为的椭圆有相同的焦点是两曲线的一个公共点,若,则等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.

查看答案和解析>>

同步练习册答案