精英家教网 > 高中数学 > 题目详情
已知椭圆的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆的方程;
(2)已知直线与椭圆交于两点,试问,是否存在轴上的点,使得对任意的为定值,若存在,求出点的坐标,若不存在,说明理由.
(1);(2)存在点使得为定值.

试题分析:(1)椭圆的标准方程是,则本题中有,已知三角形的面积为4,说明,这样可以求得;(2)存在性命题的解法都是假设存在,然后想办法求出.下面就是想法列出关于的方程,本题是直线与椭圆相交问题,一般方法是设交点为,把直线方程代入椭圆方程交化简为,则有,而,就可用表示,这个值为定值,即与无关,分析此式可得出结论..
试题解析:(1)设椭圆的短半轴为,半焦距为
,由
解得,则椭圆方程为.     (6分)
(2)由 
由韦达定理得:

=
==,     (10分)
,即时,为定值,所以,存在点使得为定值(14分).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的长轴长为,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹的方程;
(2)在曲线上有四个不同的点,满足共线,共线,且,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的右焦点为,且椭圆过点
(1)求椭圆的方程;
(2)设斜率为的直线与椭圆交于不同两点,以线段为底边作等腰三角形,其中顶点的坐标为,求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,长轴的左右端点分别为
(1)求椭圆的方程;
(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,

(1)求椭圆E的方程;
(2)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C1=1(a>b>0)的左、右焦点分别为为恰是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的中心在原点,焦点在轴上,且长轴长为12,离心率为,则椭圆的方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆有公共焦点,且离心率的双曲线方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的离心率,右焦点,方程的两个根分别为,则点在(   )
A.圆
B.圆
C.圆
D.以上三种都有可能

查看答案和解析>>

同步练习册答案