精英家教网 > 高中数学 > 题目详情
18、在正方体ABCD-A1B1C1D1中,E,F分别是AB和BC的中点,试问在棱DD1上能否找到一点M,使BM⊥平面B1EF?若能,确定点M的位置;若不能,说明理由
分析:B作BG⊥B1E交AA1于G,过G作GM∥AD交DD1于M,连BM,欲证BM⊥平面B1EF,根据直线与平面垂直的判定定理可知只需证BM与平面B1EF内两相交直线垂直,EF⊥BM,BM⊥B1E,EF∩B1E=E,满足定理要求.
解答:解:作法:①B作BG⊥B1E交AA1于G;
②过G作GM∥AD交DD1于M;
③连BM,则BM即为所求作
证明:连BD正方体ABCD-A1B1C1D1中,E,F为AB和BC的中点
∴BD⊥AC,又DD1⊥面ABCD∴EF⊥BM
又∵GM∥AD∴GM⊥面ABB1A1而BG⊥B1E∴BM⊥B1E
又EF∩B1E=E∴BM⊥平面B1EF
点评:本题主要考查了直线与平面垂直的性质,考查空间想象能力、运算能力和推理论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案