精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ax-1(a>0且a≠1)
(1)若函数y=f(x)的图象经过P(3,9)点,求a的值;
(2)比较f(lg$\frac{1}{100}$)与f(-1.9)的大小,并写出比较过程.

分析 (1)把点代入求解,
(2)化为f(-2),f(-1.9),讨论利用函数单调性求解判断

解答 解:(1)∵函数f(x)=ax-1(a>0且a≠1),函数y=f(x)的图象经过点P(3,9),
∴a2=9,a=3,
(2)f(lg$\frac{1}{100}$)=f(-2),
当a>1时,f(x)=ax-1,单调递增,
∴f(-2)<f(-1.9),
当0<a<1,f(x)=ax-1,单调递减,
f(-2)>f(-1.9)
所以,当a>1时,f(lg$\frac{1}{100}$)<f(-1.9),
当0<a<1,f(lg$\frac{1}{100}$)>f(-1.9).

点评 本题考查了指数函数,对数函数的单调性,对数的运算,属于容易题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知定义在R上的函数f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函数
(1)求a,b的值;
(2)判断f(x)的单调性,并用单调性定义证明;
(3)若对任意的t∈(-∞,1],不等式f(1+2t)+f(k•4t)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)的最小值为1,f(0)=f(2)=3,g(x)=f(x)+ax(a∈R).
①求f(x)的解析式;
②若函数g(x)在[-1,1]上不是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(x,y),x∈[1,6],y∈[1,6]则满足$\overrightarrow{a}$•$\overrightarrow{b}$<0的概率是(  )
A.$\frac{21}{25}$B.$\frac{23}{25}$C.$\frac{1}{5}$D.$\frac{3}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x+6}$的单调递增区间是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{1-2|x-\frac{1}{2}|,0≤x≤1}\\{lo{g}_{2015}x,x>1}\end{array}\right.$,若直线y=m与函数y=f(x)的三个不同交点的横坐标依次为x1,x2,x3,则x1+x2+x3的取值范围是(2,2016).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=cosx最小正周期是(  )
A.1B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,其中能被3整除的数的个数是(  )
A.198B.228C.216D.210

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,设P(x,y)是椭圆$\frac{{x}^{2}}{3}+{y}^{2}=1$上的一个动点.
(1)写出椭圆的参数方程;
(2)求S=x+y的最大值.

查看答案和解析>>

同步练习册答案