精英家教网 > 高中数学 > 题目详情
若方程2x2+3x-5m=0的两根都小于1,则求m的取值范围.
考点:一元二次方程的根的分布与系数的关系
专题:计算题,函数的性质及应用,不等式的解法及应用
分析:由方程有两个小于1且不相等的实数根知判别式△>0,两根x1+x2<2,(x1-1)(x2-1)>0,联立求解即可.
解答: 解:2x2+3x-5m=0的两根为x1,x2,则x1+x2=-
3
2
,x1x2=-
5m
2

由题意可得判别式△≥0,两根之和x1+x2<2,(x1-1)(x2-1)>0,
△=9+40m≥0
-
3
2
<2
(x1-1)(/x2-1)=x1x2-(x1+x2)+1>0

m≥-
9
40
-
5m
2
+
3
2
+1>0

解得-
9
40
m<1.
则m的取值范围是[-
9
40
,1).
点评:本题考查了一元二次方程的根的分布与系数的关系,列不等式组求解,要注意条件的等价性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在R上定义运算?:x?y=x(2-y),已知f(x)=(x+1)?(x+1-a).
(1)若关于x的不等式f(x)≥0的解集是A={x|b≤x≤1},求实数a,b;
(2)对于任意的x,不等式f(x)≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,AC=BC=
2
2
AB,四边形ABED是矩形,AB=2,平面ABED⊥平面ABC,G、F分别是EC、BD的中点,EC与平面ABC所成角的正弦值为
6
3

(Ⅰ)求证:GF∥底面ABC;
(Ⅱ)求BD与面EBC的所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex+ax+b(a,b∈R),g(x)=
x2
2

(Ⅰ)当a=b=0时,求曲线y=f(x)在点(0,f(0))处的切线方程y=h(x);并证明f(x)≥h(x)(x≥0)恒成立;
(Ⅱ)当b=-1时,若f(x)≥g(x)对于任意的x∈[0,+∞)恒成立,求a的取值范围;
(Ⅲ)求证:
n
i=1
(e 
1
k
+ln2-2g(
1
k
))>2n+2ln(n+1)(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

P是圆(x-5)2+(y-3)2=9上点,则点P到直线3x+4y-2=0的最大距离是(  )
A、2B、5C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
1-x
1+x

(1)求f(x)的定义域,
(2)证明f(x)的定义域内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是(  )
A、(2,+∞)
B、(1,+∞)
C、(1,2)
D、(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(2x-1)≥f(x)是不等式2m+
1
m
≤x2-2x≤m成立的充分条件,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-1)ex-kx2
(1)当k=1时,求函数f(x)的单调区间;
(2)若f(x)在x∈[0,+∞)上是增函数,求实数k的取值范围.

查看答案和解析>>

同步练习册答案