给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
(1)椭圆方程
,伴随圆方程
;(2)
;(3)存在,
.
【解析】
试题分析:(1)这是基本题,题设实质已知
,要求椭圆标准方程,已知圆心及半径求圆的方程;(2)为了求
点坐标,我们可设直线
方程为
,直线
与椭圆只有一个公共点,即直线
的方程与椭圆的方程联立方程组,这个方程组只有一个解,消元后利用![]()
可得
的一个方程,又直线
截圆所得弦长为
,又得一个关于
的方程,联立可解得
;(3)这是解析几何中的存在性问题,解决方法都是假设存在,然后去求出这个
,能求出就说明存在,不能求出就说明不存在.解法如下,写出过点
的直线方程,求出圆心到这条直线的距离为
,可见当圆半径不小于3时,圆上的点到这条直线的最短距离为0,即当
时,
,但由于
,无解,当圆半径小于3时,圆上的点到这条直线的最短距离为
,由此得![]()
,又有
,可解得
,故存在.
(1)由题意:
,则
,所以椭圆
的方程为
, 2分
其“伴随圆”的方程为
. 4分
(2)设直线
的方程为![]()
由
得
6分
则有
得
, ① 7分
由直线
截椭圆
的“伴随圆”所得弦长为
,可得
,得
② 8分
由①②得
,又
,故
,所以
点坐标为
. 9分
(3)过
的直线的方程为:
,
即
,得
11分
由于圆心
到直线
的距离为
, 13分
当
时,
,但
,所以,等式不能成立;
当
时,
,
由
得
所以![]()
因为
,所以
,
得
.所以
15分
考点:椭圆方程,直线与椭圆位置关系
科目:高中数学 来源:2013-2014学年江苏省徐州市高三第三次质量检测理科数学试卷(解析版) 题型:填空题
在等比数列
中,已知
,
.设
为该数列的前
项和,
为数列
的前
项和.若
,则实数
的值为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省徐州市高三第三次质量检测文科数学试卷(解析版) 题型:填空题
在等比数列
中,已知
,
.设
为该数列的前
项和,
为数列
的前
项和.若
,则实数
的值为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高考模拟考试理科数学试卷(解析版) 题型:填空题
若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的体积为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高考模拟考试文科数学试卷(解析版) 题型:填空题
已知等差数列{an}的公差不为零,a1+a2+a5>13,且a1,a2,a5 成等比数列,则a1 的取值范围为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省南通市高三年级第三次模拟考试理科数学试卷(解析版) 题型:解答题
各项均为正数的数列{an}中,设
,
,且
,
.
(1)设
,证明数列{bn}是等比数列;
(2)设
,求集合
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com