精英家教网 > 高中数学 > 题目详情
抛物线上一点到焦点的距离为3,则点的横坐标是           .
2   

试题分析:的准线方程为,x=-1.设点的横坐标是x,则抛物线上的点到焦点的距离,也就是其到抛物线准线的距离,得x+1=3,x=2,即为所求。
点评:简单题,抛物线上的点到焦点的距离,也就是其到抛物线准线的距离。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线的离心率为2,焦点与椭圆的焦点相同,求双曲线的方程及焦点坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆方程,点,A,P为椭圆上任意一点,则的取值范围是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,焦点到相应准线的距离为
(1)求椭圆C的方程
(2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.
(1) 求椭圆C的方程;
(2) 若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线-=1的右焦点为,则该双曲线的离心率等于(   )
   B.    C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知椭圆的左焦点的坐标为是它的右焦点,点是椭圆上一点, 的周长等于
(1)求椭圆的方程;
(2)过定点作直线与椭圆交于不同的两点,且(其中为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.)
直线称为椭圆的“特征直线”,若椭圆的离心率.(1)求椭圆的“特征直线”方程;
(2)过椭圆C上一点作圆的切线,切点为PQ,直线PQ与椭圆的“特征直线”相交于点EFO为坐标原点,若取值范围恰为,求椭圆C的方程.

查看答案和解析>>

同步练习册答案