精英家教网 > 高中数学 > 题目详情
(本题满分13分)已知椭圆的左焦点的坐标为是它的右焦点,点是椭圆上一点, 的周长等于
(1)求椭圆的方程;
(2)过定点作直线与椭圆交于不同的两点,且(其中为坐标原点),求直线的方程.
(1)  (2)

试题分析:(1)由已知得 所以椭圆的方程为.  (5分) 
(2)显然直线不符合条件,故设直线的方程为(6分)

……(*)  (8分)

  (10分)
将(*)式代入得 解得
时,
故所求直线有两条,其方程为   (13分)
点评:解决该试题的关键是熟练的运用其性质得到其方程,并结合设而不求的思想来结合韦达定理得到系数与根的关系,进而得到求解,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,
,.

(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以双曲线:的右焦点为圆心,并与其渐近线相切的圆的标准方程是______

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线上一点到焦点的距离为3,则点的横坐标是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线=1的焦点到渐近线的距离为(   )。
A.2B.2C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线交于A,B两点,且(其中O为坐标原点),若OMABM,则点M的轨迹方程为 (   )
A.2  B. 
C.1D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中真命题的是(  )
A.在同一平面内,动点到两定点的距离之差(大于两定点间的距离)为常数的点的轨迹是双曲线
B.在平面内,F1,F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是椭圆
C.“若-3<m<5则方程是椭圆”
D.在直角坐标平面内,到点和直线距离相等的点的轨迹是直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的焦点为F,过抛物线在第一象限部分上一点P的切线为,过P点作平行于轴的直线,过焦点F作平行于的直线交于M,若,则点P的坐标为         

查看答案和解析>>

同步练习册答案