精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,圆M的方程为x2+y2﹣8x﹣2y+16=0,若直线kx﹣y+3=0上至少存在一点,使得以该点为圆心,半径为1的圆与圆M有公共点,则k的取值范围是(
A.(﹣∞, ]
B.[0,+∞)
C.[﹣ ,0]
D.(﹣∞, ]∪[0,+∞)

【答案】C
【解析】解:将圆M的方程整理为标准方程得:(x﹣4)2+(y﹣1)2=1,
∴圆心C(4,1),半径r=1,
∵直线kx﹣y+3=0上至少存在一点,使得以该点为圆心,1为半径的圆与圆M有公共点,
∴只需圆C′:(x﹣4)2+(y﹣1)2=4与kx﹣y+3=0有公共点,
∵圆心(4,1)到直线kx﹣y+3=0的距离d= ≤2,
解得:﹣ ≤k≤0.
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC= AB,又PO⊥平面ABC,DA∥PO,DA=AO= PO.
(Ⅰ)求证:PD⊥平面COD;
(Ⅱ)求二面角B﹣DC﹣O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A(1,3),AB边上的中线CM所在直线方程为2x﹣3y+2=0,AC边上的高BH所在直线方程为2x+3y﹣9=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2xsinθ﹣1,x∈[﹣ ].
(1)当 时,求函数f(x)的最小值;
(2)若函数f(x)在x∈[﹣ ]上是单调增函数,且θ∈[0,2π],求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x
(1)解方程f(log4x)=3;
(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)对x∈[0,15]恒成立,求实数a的取值范围;
(3)存在x∈(﹣∞,0],使|af(x)﹣f(2x)|>1成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1﹣m≤x≤2m+1},B=
(1)当m=2时,求A∩B,A∪B;
(2)若BA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.
(1)判断下列函数x=g(t)是不是函数y=f(x)的一个等值域变换?说明你的理由; ①
②f(x)=x2﹣x+1,x∈R,x=g(t)=2t , t∈R.
(2)设f(x)=log2x的定义域为x∈[2,8],已知 是y=f(x)的一个等值域变换,且函数y=f[g(t)]的定义域为R,求实数m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a3=12,a11=﹣5,且任意连续三项的和均为11,则a2017=;设Sn是数列{an}的前n项和,则使得Sn≤100成立的最大整数n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱 中,底面 是边长为2的正方形, 分别为线段 的中点.

(1)求证: ||平面
(2)四棱柱 的外接球的表面积为 ,求异面直线 所成的角的大小.

查看答案和解析>>

同步练习册答案