精英家教网 > 高中数学 > 题目详情
9.(1)化简:$\frac{x-1}{{x}^{\frac{2}{3}}+{x}^{\frac{1}{3}}+1}$+$\frac{x+1}{{x}^{\frac{1}{3}}+1}$-$\frac{x-{x}^{\frac{1}{3}}}{{x}^{\frac{1}{3}}-1}$;
(2)计算:($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2005)0

分析 (1)利用指数幂的运算性质、乘法公式即可得出.
(2)利用指数幂的运算性质即可得出.

解答 解:(1)原式=${x}^{\frac{1}{3}}-1$+(${x}^{\frac{2}{3}}$-${x}^{\frac{1}{3}}$+1)-${x}^{\frac{1}{3}}$$({x}^{\frac{1}{3}}+1)$=${x}^{\frac{1}{3}}-1$+${x}^{\frac{2}{3}}$-${x}^{\frac{1}{3}}$+1-${x}^{\frac{2}{3}}$-${x}^{\frac{1}{3}}$=-${x}^{\frac{1}{3}}$.
(2)原式=22×33+${2}^{\frac{3}{4}×\frac{4}{3}}$-$4×\frac{4}{7}$-${2}^{\frac{1}{4}+\frac{3}{4}}$-1
=108+2-$\frac{16}{7}$-2-1
=104+$\frac{5}{7}$.

点评 本题考查了指数幂的运算性质、乘法公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.正三角形ABC的边长为2,将它沿高AD翻折,使BD⊥CD,此时四面体ABCD外接球表面积为5π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A=$\{x|\frac{3-2x}{x+2}>-1\}$,
(Ⅰ)若B⊆A,B={x|m+1<x<2m-1},求实数m的取值范围;
(Ⅱ)若A⊆B,B={x|m-6<x<2m-1},求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC中,C=45°,a=$\frac{\sqrt{2}}{4}$,sin2A=sin2B-$\sqrt{2}$sinAsinB,则c=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax(a>0且a≠0)经过点(2,4).
(1)求a的值;
(2)画出函数g(x)=a|x|图象,并写出该函数在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)不等式ax2+5x-2>0解是$\left\{{\left.x\right|\frac{1}{2}<x<2}\right\}$,解不等式ax2-5x+a2-1>0;
(2)求不等式|2x-1|+|x+2|≥4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对于平面α和共面的直线m、n,下列命题中真命题是③(填序号).
①若m⊥α,m⊥n,则n∥α;
②若m∥α,n∥α,则m∥n;
③若m?α,n∥α,则m∥n;
④若m、n与α所成的角相等,则m∥n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2x+$\frac{a}{{2}^{x}}$(a为常数).
(1)当a<0时,判断y=f(x)的单调性并证明;
(2)若方程f(x)-1=0有两个相异实根,求实数a的范围;
(3)若y=f(x)为偶函数,且关于x的不等式f(x-4)≤m恰有3个正整数解时,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}为等差数列,其前n项和为Sn,a1+a2=3,a2+a3=6,若对任意n∈N*,求S9的值.

查看答案和解析>>

同步练习册答案