精英家教网 > 高中数学 > 题目详情

已知曲线C:数学公式,给出以下结论:
①垂直于x轴的直线与曲线C只有一个交点
②直线y=kx+m(k,m∈R)与曲线C最多有三个交点
③曲线C关于直线y=-x对称
④若P1(x1,y1),P2(x2,y2)为曲线C上任意两点,则有数学公式
写出正确结论的序号________.

①②④
分析:去掉绝对值,化简曲线的方程,结合图形分析每个选择支的正确性,找出正确的选项.
解答:当x>0,y>0 时,方程是-=1,图象是焦点在x轴上的双曲线位于第一象限内的部分,
当 x>0,y<0 时,方程是+=1,图象是椭圆在第四象限内的部分,
当 x<0,y>0 时,方程 是+=-1,不表示任何图形,
当 x<0,y<0 时,方程是-=1,图象是焦点在y轴上的双曲线位于第三象限内的部分.
数形结合得,由曲线形状知,①正确,②正确.
③不正确,∵把方程中的x换成-y,y换成-x后,得到曲线方程和原来的方程不一样,∴曲线C不关于直线y=-x对称.
④正确,因为图象上任意的2个点连线的斜率都大于0.
故答案为 ①②④.
点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2
c
、点F(-c,0)、曲线C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断
 
 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

A村在C村正北
3
km处,B地在C村正西16km处,已知弧形公路PQ上任一点到B、C两点的距离之差为8km.
(1)如图,以BC中点O为原点,建立坐标系,求弧形公路PQ所在曲线的方程;
(2)现要在公路旁建造一个变电站M分别向A村、C村送电,但A村有一村办工厂用电需用专用线路,不得与民用混线用电,因此向A村要架两条线路分别给村民和工厂送电.要使用电线最短,变电站M应建在A村的什么方位,并求出M到A村的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=ax+1-a(a∈R).若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线方程:①y=-2|x-1|;②y=x2;③(x-1)2+(y-1)2=1;④x2+3y2=4;则其中直线l的“绝对曲线”有(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北七市(州)高三年级联合考试理科数学试卷(解析版) 题型:选择题

已知直线.若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出四条曲线方程:①;②;③;④;则其中直线的“绝对曲线”有          (        )

A.①④    B.②③    C.②④    D.②③④

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北荆州、黄冈、襄阳、十堰、宜昌、孝感、恩施七市高三4月联考理数学卷(解析版) 题型:选择题

已知直线l:y=ax+1-a(a∈R).若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线方程:①y="-2" |x-1|;②y=;③(x-1)2+(y-1)2=1;④x2+3y2=4;则其中直线l的“绝对曲线”有

A.①④             B.②③             C.②④             D.②③④

 

查看答案和解析>>

同步练习册答案