分析 (1)通过an+1=2an+3n-4与an=2an-1+3n-7作差、计算可知an+1-an=2(an-an-1)+3,变形可知an+1-an+3=2(an-an-1+3),进而可知数列{an+1-an+3}是以3为首项、2为公比的等比数列;
(2)通过(1)可知an+1-an+3=3•2n-1,累加可知数列{an}的通项公式an=1-3n+3•2n-1,进而计算可得结论.
解答 (1)证明:∵an+1=2an+3n-4,
∴当n≥2时,an=2an-1+3n-7,
两式相减得:an+1-an=2(an-an-1)+3,
即an+1-an+3=2(an-an-1+3),
又∵a2-a1+3=a1+3-4+3=1+2=3,
∴数列{an+1-an+3}是以3为首项、2为公比的等比数列;
(2)解:由(1)可知an+1-an+3=3•2n-1,
∴an+1-an=-3+3•2n-1,
an-an-1=-3+3•2n-2,
an-1-an-2=-3+3•2n-3,
…
a2-a1=-3+3•20,
累加得:an-a1=-3(n-1)+3•2n-2+3•2n-3+…+3•20
=3-3n+3•$\frac{1-{2}^{n-1}}{1-2}$
=3-3n+3•2n-1-3
=-3n+3•2n-1,
∴数列{an}的通项公式an=a1-3n+3•2n-1=1-3n+3•2n-1;
∴Sn=n-3(1+2+…+n)+3(1+2+22+…+2n-1)
=n-3•$\frac{n(n+1)}{2}$+3•$\frac{1-{2}^{n}}{1-2}$
=3•2n-$\frac{3}{2}$n2-$\frac{1}{2}$n-3.
点评 本题考查等比数列的判定,考查数列的通项及前n项和,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b+c<2a | B. | b+c≤2a | C. | b+c=2a | D. | b+c≥2a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com