分析 (1)分情况将原不等式绝对值符号去掉,然后求解;
(2)分x=0与x≠0两种情况研究:当x=0时,显然成立;当x≠0时,两边同除以|x|,然后求出左边的最小值,解关于m的不等式即可.
解答 解:(1)f(x)=|2x-1|+|x-1|,
当x≤$\frac{1}{2}$时,原不等式可化为-(2x-1)-(x-1)≥x+4,解得x≤-$\frac{1}{2}$;
当$\frac{1}{2}$<x≤1时,原不等式可化为2x-1-(x-1)≥x+4,即1≥4,无解;
当x>1时,原不等式可化为2x-1+x-1≥x+4,解得:x≥3;
综上可得,原不等式的解集为{x|x≤-$\frac{1}{2}$或x≥3}.
(2)当x=0时,原不等式为2≥0,显然恒成立;
当x≠0时,原不等式两边同除以|x|,则不等式可化为:
|2-$\frac{1}{x}$|+|$\frac{1}{x}$-1|≥m2-3m+3恒成立.
因为|2-$\frac{1}{x}$|+|$\frac{1}{x}$-1|≥|(2-$\frac{1}{x}$)+($\frac{1}{x}$-1)|=1.
所以要使原式恒成立,只需m2-3m+3≤1即可,即m2-3m+2≤0.
解得1≤m≤2.
点评 本题考查了绝对值不等式的解法以及不等式恒成立问题的解题思路,一般的不等式恒成立问题要转化为函数的最值问题来解.本题还考查了分类讨论思想的应用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2-y2=8 | B. | y2-x2=8 | C. | x2-y2=4 | D. | y2-x2=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com