【题目】如果对于一切的正实数x、y,不等式
﹣cos2x≥asinx﹣
都成立,则实数a的取值范围
【答案】[﹣3,3]
【解析】解:由于y>0,则
+
,由于对于一切的正实数x、y,不等式
﹣cos2x≥asinx﹣
都成立,
即
+
≥3≥asinx+cos2x对任意的正实数x都成立,
故sin2x﹣asinx+2≥0对任意的正实数x都成立,
令f(t)=t2﹣at+2,t∈[﹣1,1]
若使f(t)=t2﹣at+2≥0在t∈[﹣1,1]时恒成立,
则必有△=a2﹣8≤0或
,
解得﹣2
≤a≤2
或﹣3
或2
a≤3
故使sin2x﹣asinx+2≥0对任意的正实数x都成立的a的范围是[﹣3,3],
故对于一切的正实数x、y,不等式
﹣cos2x≥asinx﹣
都成立,则实数a的取值范围为[﹣3,3],
所以答案是:[﹣3,3]
【考点精析】认真审题,首先需要了解同角三角函数基本关系的运用(同角三角函数的基本关系:![]()
;![]()
;(3) 倒数关系:
).
科目:高中数学 来源: 题型:
【题目】已知
是椭圆
的左、右焦点,
为坐标原点,点
在椭圆上,线段
与
轴的交点为
,且
.
(1)求椭圆的标准方程;
(2)圆
是以
为直径的圆,直线
与圆
相切,并与椭圆交于不同的两点
,
,当
,且满足
时,求
的面积
的取值范围.
请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
.
(1)若复数z1对应的点M(m,n)在曲线
上运动,求复数z所对应的点P(x,y)的轨迹方程;
(2)将(1)中的轨迹上每一点按向量
方向平移
个单位,得到新的轨迹C,求C的轨迹方程;
(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数,
).以原点
为极点,以
轴正半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程为
.
(Ⅰ)设
为曲线
上任意一点,求
的取值范围;
(Ⅱ)若直线
与曲线
交于两点
,
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的离心率为
,以椭圆的四个顶点为顶点的四边形的面积为8.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,斜率为
的直线
与椭圆
交于
,
两点,点
在直线
的左上方.若
,且直线
,
分别与
轴交于
,
点,求线段
的长度.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(
)x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1﹣|x|),则关于h(x)有下列命题:
①h(x)的图象关于原点对称;
②h(x)为偶函数;
③h(x)的最小值为0;
④h(x)在(0,1)上为减函数.
其中正确命题的序号为:②③.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com