精英家教网 > 高中数学 > 题目详情
18.求下列函数的反函数
(1)y=x2-2x-3(x≤-2);
(2)y=$\frac{{2}^{x}}{1+{2}^{x}}$(x≥1);
(3)y=1-3log5(x2+1)(x≥3);
(4)y=log3$\frac{2-x}{2+x}$;
(5)y=log${\;}_{\frac{1}{2}}$$\frac{4}{2-x}$,x∈(-∞,1)

分析 (1)(2)(3)(4)(5),首先求出原函数的值域,把原函数表达式看做方程,用y表示x,再把x与y互换,即可得出原函数的反函数及其定义域(即原函数的值域).

解答 解:(1)由y=x2-2x-3=(x-1)2-4,(x≤-2);解得x-1=-$\sqrt{y+4}$,y≥5.把x与y互换可得:y=1+$\sqrt{x+4}$,∴圆满函数的反函数是:y=1+$\sqrt{x+4}$ (x≥5).
(2)∵x≥1,∴2x≥2,由y=$\frac{{2}^{x}}{1+{2}^{x}}$∈$[\frac{4}{5},1)$,解得:2x=$\frac{y}{1-y}$,即x=$lo{g}_{2}\frac{y}{1-y}$,把x与y互换可得原函数的反函数:y=$lo{g}_{2}\frac{x}{1-x}$,x∈$[\frac{4}{5},1)$.
(3)由y=1-3log5(x2+1)(x≥3),解得:x=$\sqrt{{5}^{\frac{1-y}{3}}-1}$,把x与y互换可得原函数的反函数:y=$\sqrt{{5}^{\frac{1-x}{3}}-1}$(x≤1-3log510).
(4)由$\frac{2-x}{2+x}$>0,解得-2<x<2.由y=log3$\frac{2-x}{2+x}$,化为:$\frac{2-x}{2+x}$=3y,解得x=$\frac{2-2•{3}^{y}}{1+{3}^{y}}$,把x与y互换可得原函数的反函数:y=$\frac{2-2•{3}^{x}}{1+{3}^{x}}$,x∈R.
(5)∵x∈(-∞,1),∴$\frac{4}{2-x}$∈(0,4),∴y=log${\;}_{\frac{1}{2}}$$\frac{4}{2-x}$∈(-2,+∞),由y=log${\;}_{\frac{1}{2}}$$\frac{4}{2-x}$,解得:x=2-2y+2,把x与y互换可得原函数的反函数:y=2-2x+2,x∈(-2,+∞).

点评 本题考查了函数的反函数的求法、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=$\left\{{\begin{array}{l}{{x^2}-2x+13,x∈[{0,1})}\\{xlnx,x∈[{1,2})}\end{array}}$,若当x∈[-4,-2)时,函数f(x)≥t2+2t恒成立,则实数t的取值范围为(  )
A.-3≤t≤0B.-3≤t≤1C.-2≤t≤0D.0≤t≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b是两条互相垂直的异面直线,下列说法中不正确的是(  )
A.存在平面α,使得a?α且b⊥α
B.存在平面β,使得b?β 且a∥β
C.若点A,B分别在直线a,b上,且满足AB⊥b,则一定有AB⊥a
D.过空间某点不一定存在与直线a,b都平行的平面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的虚轴的上顶点是A,右焦点是F,O为坐标原点,点P满足$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{PF}$,若直线OP的倾斜角是60°,则该双曲线的离心率是(  )
A.$\sqrt{2}$B.2C.$\frac{4}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用不等式组表示图中的阴影区域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.首位数字是1,且恰有两个数字相同的四位数共有(  )
A.216个B.252个C.324个D.432个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用0,1,2,3,4,5这六个数字组成无重复数字的自然数.
(1)在组成的五位数中比40000大的偶数个数;
(2)在组成的五位数abcde中,如果满足条件“a>b>c<d<e”,则称这个数为“凹数”如51023,试求凹数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=3,则|5$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知F1、F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且右焦点F2的坐标为(1,0),点P(1,$\frac{\sqrt{2}}{2}$)在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)若过点F2的直线l与椭圆C交于A,B两点,且|AB|=$\frac{4}{3}$$\sqrt{2}$,求直线l的方程;
(3)过椭圆C上异于其顶点的任一点Q,作圆O:x2+y2=1的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴、y轴上的截距分别为m、n,那么$\frac{1}{{m}^{2}}$+$\frac{2}{{n}^{2}}$是否为定值?若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案