精英家教网 > 高中数学 > 题目详情
8.已知正项数列{an}的前n项和为Sn,${S}_{n}=\frac{1}{2}{a}_{n}({a}_{n}+1)$,n∈N*
(Ⅰ)求通项an
(Ⅱ)若${b}_{n}=\frac{1}{{S}_{n}}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)当n=1时,a1=S1,n≥1时,an+1=Sn+1-Sn,化简整理,结合等差数列的定义和通项公式,即可得到所求;
(Ⅱ)由(Ⅰ)得${S}_{n}=\frac{1}{2}{a}_{n}({a}_{n}+1)=\frac{1}{2}n(n+1)$,可得${b}_{n}=\frac{1}{{S}_{n}}=\frac{2}{n(n+1)}=\frac{2}{n}-\frac{2}{n+1}$,再由数列的求和方法:裂项相消求和,化简即可得到所求和.

解答 解:(Ⅰ) ${a}_{1}={S}_{1}=\frac{1}{2}{a}_{1}({a}_{1}+1)$,a1>0,
解得a1=1…(1分)
?n∈N*,${a}_{n+1}={S}_{n+1}-{S}_{n}=\frac{1}{2}{a}_{n+1}({a}_{n+1}+1)-\frac{1}{2}{a}_{n}({a}_{n}+1)$ …(2分)
移项整理并因式分解得:(an+1-an-1)(an+1+an)=0…(4分)
因为{an}是正项数列,所以an+1-an-1=0,an+1-an=1…(5分)
{an}是首项a1=1、公差为1的等差数列,an=n…(6分)
(Ⅱ)由(Ⅰ)得${S}_{n}=\frac{1}{2}{a}_{n}({a}_{n}+1)=\frac{1}{2}n(n+1)$ …(7分)
${b}_{n}=\frac{1}{{S}_{n}}=\frac{2}{n(n+1)}=\frac{2}{n}-\frac{2}{n+1}$,…(8分)
${T}_{n}={b}_{1}+{b}_{2}+…+{b}_{n}=(\frac{2}{1}-\frac{2}{2})+(\frac{2}{2}-\frac{2}{3})+…+(\frac{2}{n}-\frac{2}{n+1})$,…(10分)
=$(\frac{2}{1}-\frac{2}{n+1})=\frac{2n}{n+1}$.…(12分)

点评 不同考查数列的通项公式的求法,注意运用数列的递推式,考查等差数列的通项公式的运用,以及数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知△ABC的内角A、B、C的对边分别为a、b、c,其中c=2b-2acosC.
(1)求A;
(2)当a=2时,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设a>0,函数f(x)=x2-2ax-2alnx
(1)当a=1时,求函数f(x)的单调区间;
(2)若函数y=f(x)在区间(0,+∞)上有唯一零点,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某商场对一个月内每天的顾客人数进行统计,得到如图所示的样本茎叶图,则该样本的中位数和众数分别是(  )
A.46,45B.45,46C.45,45D.47,45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\frac{lnx}{x}$,关于x的不等式f2(x)-af(x)>0有且只有三个整数解,则实数a的取值范围是(  )
A.[$\frac{ln5}{5}$,$\frac{ln2}{2}$)B.[$\frac{ln5}{5}$,$\frac{ln3}{3}$)C.($\frac{ln5}{5}$,$\frac{ln2}{2}$]D.($\frac{ln5}{5}$,$\frac{ln3}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设i是虚数单位,若(2a+i)(1-2i)是纯虚数,则实数a=(  )
A.1B.-1C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.△ABC的内角A、B、C所对的边分别是,a、b、c,△ABC的面积S=$\frac{\sqrt{3}}{2}$$\overrightarrow{AB}$•$\overrightarrow{AC}$.
(Ⅰ)求A的大小;
(Ⅱ)若b+c=5,a=$\sqrt{7}$,求△ABC的面积的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2sin Acos B=2sin C-sin B.
(I)求角A;
(Ⅱ)若a=4$\sqrt{3}$,b+c=8,求△ABC 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正△ABC内接于半径为2的圆O,点P是圆O上的一个动点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是(  )
A.[0,6]B.[-2,6]C.[0,2]D.[-2,2]

查看答案和解析>>

同步练习册答案