| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
分析 由①可得f(x)+f(2-x)=0,求得x在[1,3]上的f(x)的解析式;再由②求得x在[-3,-1]上的解析式,画出f(x)和y═( $\frac{1}{2}$)|x|在[-3,3]的图象,通过图象观察,可得它们有5个交点,即可得到零点的个数.
解答 解:由题意图象关于(1,0)点对称;可得f(x)+f(2-x)=0,
当1≤x≤2时,0≤2-x≤1,f(2-x)=cos$\frac{π}{2}$(2-x)=-cos$\frac{π}{2}$x,![]()
则f(x)=-f(2-x)=cos$\frac{π}{2}$x;
当2<x≤3时,-1≤x<0,f(2-x)=1-(2-x)2,
则f(x)=-f(2-x)=(2-x)2-1.
由②f(-1+x)=f(-1-x),即为f(x)=f(-x-2),
当-3≤x≤-2时,0≤-2-x≤1,f(-2-x)=cos$\frac{π}{2}$(-2-x)=-cos$\frac{π}{2}$x,
则f(x)=-f(-2-x)=-cos$\frac{π}{2}$x;
当-2<x≤-1时,-1≤-2-x<0,f(-2-x)=1-(-2-x)2,
则f(x)=f(-2-x)=1-(-2-x)2.
y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]上的零点
即为y=f(x)和y=($\frac{1}{2}$)|x|在[-3,3]的交点个数.
作出y=f(x)和y═($\frac{1}{2}$)|x|在[-3,3]的图象,
通过图象观察,可得它们有5个交点,
即有5个零点.
故选:A.
点评 本题考查函数的性质和运用,考查函数方程的转化思想,注意运用数形结合的思想方法,属于中档题.
科目:高中数学 来源: 题型:解答题
| 运动时间 性别 | 运动达人 | 非运动达人 | 合计 |
| 男生 | 36 | ||
| 女生 | 26 | ||
| 合计 | 100 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | 12 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4. | B. | 3. | C. | 2. | D. | 1. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com