精英家教网 > 高中数学 > 题目详情
15.若命题“?x∈[0,$\frac{π}{2}$],不等式exsinx≥kx”是真命题,则实数k的取值范围是(  )
A.(-∞,1]B.(-∞,e${\;}^{\frac{π}{2}}$]C.(1,e${\;}^{\frac{π}{2}}$)D.[e${\;}^{\frac{π}{2}}$,+∞)

分析 令f(x)=exsinx-kx,由于“?x∈[0,$\frac{π}{2}$],不等式exsinx≥kx”是真命题,可得f′(x)≥0恒成立,即可得出.

解答 解:令f(x)=exsinx-kx,∵“?x∈[0,$\frac{π}{2}$],不等式exsinx≥kx”是真命题,
∴f′(x)=ex(sinx+cosx)-k≥0恒成立,
∴k≤ex(sinx+cosx)的最小值,
令g(x)=ex(sinx+cosx),g′(x)=2excosx≥0,∴函数g(x)在x∈[0,$\frac{π}{2}$]单调递增,
∴g(x)≥g(0)=1,即k≤1.
故选:A.

点评 本题考查了利用导数研究函数的单调性极值与最值、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为x-$\sqrt{2}$y=0,焦距为2$\sqrt{3}$.~
(1)求双曲线E的方程;
(2)若直线l:y=kx(k>0)与双曲线E交于A,B两点,且点A在第一象限,过点A作x轴的垂线,交x轴于点C,交双曲线E于另一点A1,连接BC交双曲线E于点D,求证:AD⊥OA1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列各对直线的位置关系:
(1)l1:2x+3y-7=0;l2:5x-y-9=0;
(2)l1:2x-3y+5=0;l2:4x-6y+10=0;
(3)l1:2x-y+1=0;l2:4x-2y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.f(x)=$\frac{x}{{x}^{2}+1}$(x≤0)的值域为[-$\frac{1}{2}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在空间四边形ABCD中,AB=AC,DB=DC,点E为BC的中点,求证:BC⊥平面AED.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是B1C1,CC1的中点.求:
(1)AB与DD1所成的角;
(2)AC与B1D1所成的角;
(3)AC与BC1所成的角;
(4)A1D与EF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若数列{an}满足:存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足a1=m(m>0),${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,若a3=4,则m的所有可能取值为(  )
A.{6,$\frac{5}{4}$}B.{6,$\frac{5}{4}$,$\frac{2}{5}$}C.{6,$\frac{5}{4}$,$\frac{1}{5}$}D.{6,$\frac{1}{5}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等比数列{an}中,a1=1,a5=4,则a3=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.cos70°cos40°+sin70°sin40°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案