7£®ÈôÊýÁÐ{an}Âú×㣺´æÔÚÕýÕûÊýT£¬¶ÔÓÚÈÎÒâÕýÕûÊýn¶¼ÓÐan+T=an³ÉÁ¢£¬Ôò³ÆÊýÁÐ{an}ΪÖÜÆÚÊýÁУ¬ÖÜÆÚΪT£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=m£¨m£¾0£©£¬${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1£¬{a}_{n}£¾1}\\{\frac{1}{{a}_{n}}£¬0£¼{a}_{n}¡Ü1}\end{array}\right.$£¬Èôa3=4£¬ÔòmµÄËùÓпÉÄÜȡֵΪ£¨¡¡¡¡£©
A£®{6£¬$\frac{5}{4}$}B£®{6£¬$\frac{5}{4}$£¬$\frac{2}{5}$}C£®{6£¬$\frac{5}{4}$£¬$\frac{1}{5}$}D£®{6£¬$\frac{1}{5}$}

·ÖÎö ¶Ôm·ÖÀàÌÖÂÛ£¬ÀûÓõÝÍÆ¹ØÏµ¼´¿ÉµÃ³ö£®

½â´ð ½â£ºÊýÁÐ{an}Âú×ãa1=m£¨m£¾0£©£¬${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1£¬{a}_{n}£¾1}\\{\frac{1}{{a}_{n}}£¬0£¼{a}_{n}¡Ü1}\end{array}\right.$£¬a3=4£¬
¢ÙÈôm£¾2£¬Ôòa2=m-1£¾1£¬¡àa3=m-2=4£¬½âµÃm=6£®
¢ÚÈôm=2£¬Ôòa2=m-1=1£¬¡àa3=$\frac{1}{{a}_{2}}$=1¡Ù4£¬ÉáÈ¥£®
¢ÛÈô1£¼m£¼2£¬Ôòa2=m-1¡Ê£¨0£¬1£©£¬¡àa3=$\frac{1}{m-1}$=4£¬½âµÃm=$\frac{5}{4}$£®
¢ÜÈôm=1£¬Ôòa2=$\frac{1}{{a}_{1}}$=1£¬¡àa3=$\frac{1}{{a}_{2}}$¡Ù4£¬ÉáÈ¥£®
¢ÝÈô0£¼m£¼1£¬Ôòa2=$\frac{1}{{a}_{1}}$=$\frac{1}{m}$£¾1£¬¡àa3=a2-1=$\frac{1}{m}$-1=4£¬½âµÃm=$\frac{1}{5}$£®
×ÛÉϿɵãºm¡Ê$\{6£¬\frac{5}{4}£¬\frac{1}{5}\}$£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁ˵ȱÈÊýÁеÄͨÏʽ¡¢µÝÍÆ¹ØÏµ£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªµãF1¡¢F2ÊÇË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬OÎª×ø±êÔ­µã£¬µãPÔÚË«ÇúÏßCµÄÓÒÖ§ÉÏ£¬ÇÒÂú×ã|F1F2|=2|OP|£¬|PF1|¡Ý3|PF2|£¬ÔòË«ÇúÏßCµÄÀëÐÄÂʵÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®[$\frac{\sqrt{10}}{2}$£¬+¡Þ£©C£®£¨1£¬$\frac{\sqrt{10}}{2}$]D£®£¨1£¬$\frac{5}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Å×ÖÀÁ½Ã¶÷»×Ó£¬µ±ÖÁÉÙÓÐһö5µã»òһö6µã³öÏÖʱ£¬¾Í˵Õâ´ÎÊÔÑé³É¹¦£¬ÇóÔÚ30´ÎÊÔÑéÖгɹ¦´ÎÊýXµÄ¾ùÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈôÃüÌâ¡°?x¡Ê[0£¬$\frac{¦Ð}{2}$]£¬²»µÈʽexsinx¡Ýkx¡±ÊÇÕæÃüÌ⣬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1]B£®£¨-¡Þ£¬e${\;}^{\frac{¦Ð}{2}}$]C£®£¨1£¬e${\;}^{\frac{¦Ð}{2}}$£©D£®[e${\;}^{\frac{¦Ð}{2}}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Éèa=tan$\frac{¦Ð}{7}$£¬b=$\frac{¦Ð}{7}$£¬c=sin$\frac{¦Ð}{7}$£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®c£¾b£¾aB£®b£¾c£¾aC£®a£¾c£¾bD£®a£¾b£¾c

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêɽÎ÷ÐÃÖÝÒ»ÖиßÒ»ÉÏѧÆÚÐÂÉúÃþµ×ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¬ÆäÖУ¬.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èôº¯Êýy=$\frac{ax+1}{x-3}$µÄ·´º¯ÊýÊÇËü±¾Éí£¬ÔòaµÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¼ÆËã$£¨\frac{27}{8}£©^{-\frac{1}{3}}$-cos¦Ð-$lo{g}_{2}£¨{4}^{\frac{1}{3}£©}$+${{C}_{9}}^{7}$=37£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©¡¢F2£¨c£¬0£©£¬PÊÇÍÖÔ²CÉÏÒ»µã£¬ÇÒ|PF2|=|F1F2|£¬Ö±ÏßPF1ÓëÔ²x2+y2=$\frac{{c}^{2}}{4}$ÏàÇУ¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{\sqrt{3}-1}{2}$C£®$\frac{\sqrt{2}-1}{2}$D£®$\frac{\sqrt{3}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸