精英家教网 > 高中数学 > 题目详情
20.已知点F1、F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,O为坐标原点,点P在双曲线C的右支上,且满足|F1F2|=2|OP|,|PF1|≥3|PF2|,则双曲线C的离心率的取值范围为(  )
A.(1,+∞)B.[$\frac{\sqrt{10}}{2}$,+∞)C.(1,$\frac{\sqrt{10}}{2}$]D.(1,$\frac{5}{2}$]

分析 由直角三角形的判定定理可得△PF1F2为直角三角形,且PF1⊥PF2,运用双曲线的定义,可得|PF1|-|PF2|=2a,
又|PF1|≥3|PF2|,可得|PF2|≤a,再由勾股定理,即可得到c≤$\frac{\sqrt{10}}{2}$a,运用离心率公式,即可得到所求范围.

解答 解:由|F1F2|=2|OP|,可得|OP|=c,
即有△PF1F2为直角三角形,且PF1⊥PF2
可得|PF1|2+|PF2|2=|F1F2|2
由双曲线定义可得|PF1|-|PF2|=2a,
又|PF1|≥3|PF2|,可得|PF2|≤a,
即有(|PF2|+2a)2+|PF2|2=4c2
化为(|PF2|+a)2=2c2-a2
即有2c2-a2≤4a2
可得c≤$\frac{\sqrt{10}}{2}$a,
由e=$\frac{c}{a}$可得
1<e≤$\frac{\sqrt{10}}{2}$,
故选:C.

点评 本题考查双曲线的离心率的范围,注意运用双曲线的定义和直角三角形的性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,若依次输入m=${0.6^{\frac{1}{2}}}$,n=0.6-2,p=${({\frac{1}{3}})^{\frac{1}{2}}}$,则输出的结果为(  )
A.${({\frac{1}{3}})^{\frac{1}{2}}}$B.${0.6^{\frac{1}{2}}}$C.0.6-2D.${0.6^{-\frac{3}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,0≤x≤2}\\{f(x-1),x>2}\\{\;}\end{array}\right.$,若方程f(x)=kx恰有4个不同的根,则实数k的取值范围是$\frac{3}{5}$<k≤$\frac{3}{4}$或-$\frac{3}{4}$≤k<-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为x-$\sqrt{2}$y=0,焦距为2$\sqrt{3}$.~
(1)求双曲线E的方程;
(2)若直线l:y=kx(k>0)与双曲线E交于A,B两点,且点A在第一象限,过点A作x轴的垂线,交x轴于点C,交双曲线E于另一点A1,连接BC交双曲线E于点D,求证:AD⊥OA1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,异面直线AB,CD互相垂直,CF是它们的公垂线段,且F为AB的中点,作DE$\stackrel{∥}{=}$CF,连接AC、BD,G为BD的中点,AB=AC=AE=BE=2.
(1)在平面ABE内是否存在一点H,使得AC∥GH?若存在,求出点H所在的位置,若不存在,请说明理由;
(2)求G-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.己知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),以C的一个顶点为圆心,a为半径的圆被C截得的劣弧长为$\frac{2π}{3}a$,则双曲线C的离心率为$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设x>0,y>0,且2x+8y=xy,求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列各对直线的位置关系:
(1)l1:2x+3y-7=0;l2:5x-y-9=0;
(2)l1:2x-3y+5=0;l2:4x-6y+10=0;
(3)l1:2x-y+1=0;l2:4x-2y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若数列{an}满足:存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足a1=m(m>0),${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,若a3=4,则m的所有可能取值为(  )
A.{6,$\frac{5}{4}$}B.{6,$\frac{5}{4}$,$\frac{2}{5}$}C.{6,$\frac{5}{4}$,$\frac{1}{5}$}D.{6,$\frac{1}{5}$}

查看答案和解析>>

同步练习册答案