分析 设双曲线与圆A在第一象限的交点为P,由题意可得AP与x轴的夹角为60°,由三角函数的定义可得P的坐标,代入双曲线的方程,结合a,b,c和离心率公式计算即可得到所求值.
解答 解:设双曲线与圆A在第一象限的交点为P,
由题意可得AP与x轴的夹角为60°,
即有P(a+acos60°,asin60°),
即为($\frac{3a}{2}$,$\frac{\sqrt{3}}{2}$a),
代入双曲线的方程可得$\frac{9{a}^{2}}{4{a}^{2}}$-$\frac{3{a}^{2}}{4{b}^{2}}$=1,
即有3a2=5b2=5(c2-a2),
即5c2=8a2,
由e=$\frac{c}{a}$,可得e=$\frac{2\sqrt{10}}{5}$.
故答案为:$\frac{2\sqrt{10}}{5}$.
点评 本题考查双曲线的离心率的求法,注意运用点满足双曲线的方程,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 语言表达能力 人数 逻辑思维能力 | 一般 | 良好 | 优秀 |
| 一般 | 2 | 2 | 1 |
| 良好 | 4 | m | 1 |
| 优秀 | 1 | 3 | n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\frac{\sqrt{6}}{4}$x | B. | y=±$\frac{2\sqrt{6}}{3}$x | C. | y=±2$\sqrt{2}$x | D. | y=±$\frac{2\sqrt{3}}{3}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{7}$ | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [$\frac{\sqrt{10}}{2}$,+∞) | C. | (1,$\frac{\sqrt{10}}{2}$] | D. | (1,$\frac{5}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com