精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{cosx}{{e}^{x}}$,则函数f(x)的图象在点(0,f(0))处的切线方程为(  )
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0

分析 先求函数的导函数f′(x),再求所求切线的斜率即f′(0),由于切点为(0,1),故由点斜式即可得所求切线的方程.

解答 解:∵f(x)=$\frac{cosx}{{e}^{x}}$,
∴f′(x)=$\frac{-sinx-cosx}{{e}^{x}}$,
∴f′(0)=-1,f(0)=1,
即函数f(x)图象在点(0,1)处的切线斜率为-1,
∴图象在点(0,f(0))处的切线方程为y=-x+1,
即x+y-1=0.
故选:B.

点评 本题考查了基本函数导数公式,导数的四则运算,导数的几何意义,求已知切点的切线方程的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.定义:若椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),则其特征折线为$\frac{|x|}{a}$+$\frac{|y|}{b}$=1(a>b>0).设椭圆的两个焦点为F1、F2,长轴长为10,点P在椭圆的特征折线上,则下列不等式成立的是(  )
A.|PF1|+|PF2|>10B.|PF1|+|PF2|<10C.|PF1|+|PF2|≥10D.|PF1|+|PF2|≤10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|-1<x<3},集合B={x|x2-ax+b<0,a,b∈R}.
(Ⅰ)若A=B,求a,b的值;
(Ⅱ)若b=3,且(A∩B)?B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设等比数列{an}中,前n项和为Sn,已知S3=8,S6=7,则a2=-$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图为一个求20个数的平均数的算法语句,在横线上应填充的是20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
(1)求f(x)的最小正周期和增区间
(2)(6分)当x∈[-$\frac{π}{6},\frac{π}{4}$]时,求f(x)的最大值和最小值,并指出f(x)取得最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-1≤0\\ y≤2\end{array}\right.$,那么z=x2+y2的最小值为(  )
A.5B.4C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.用秦九韵算法计算多项式f(x)=5x5+4x4+3x3+2x2+x+1,当x=5时,乘法运算的次数为5;加法运算的次数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下面各组函数中是同一函数的是(  )
(1)$y=\sqrt{-2{x^3}}与y=x\sqrt{-2x}$
(2)$y={(\sqrt{x})^2}$与y=|x|
(3)$y=\sqrt{x+1}•\sqrt{x-1}与y=\sqrt{(x+1)(x-1)}$
(4)f(x)=x2-2x-1与g(t)=t2-2t-1.
A.(1)(3)(4)B.(1)(2)(3)C.(3)(4)D.(4)

查看答案和解析>>

同步练习册答案