精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|-1<x<3},集合B={x|x2-ax+b<0,a,b∈R}.
(Ⅰ)若A=B,求a,b的值;
(Ⅱ)若b=3,且(A∩B)?B,求a的取值范围.

分析 (Ⅰ)根据韦达定理求出a,b的值即可;
(Ⅱ)得到B⊆A,通过讨论B是∅和B不是∅,得到关于a的不等式组,解出即可.

解答 解:(Ⅰ)由题意:x2-ax+b<0的解为-1<x<3,
所以:x2-ax+b=0,的解为x=-1,x=3,
即韦达定理有:a=-1+3=2;b=-1×3=-3…(5分)
(Ⅱ)由于(A∩B)⊆B,
又因为(A∩B)?B所以(A∩B)=B,
即:B⊆A,
ⅰ)当B=∅时,x2-ax+3<0无解,
即△≤0,所以a2-12≤0,即$-2\sqrt{3}≤a≤2\sqrt{3}$;
ⅱ)当B≠∅时,且B⊆A,
只要方程x2-ax+3=0的两个不等的实数根在[-1,3]内即可,
令f(x)=x2-ax+3
则$\left\{{\begin{array}{l}{△>0}\\{-1<\frac{a}{2}<3}\\{f(-1)≥0}\\{f(3)≥0}\end{array}}\right.$,解得:$2\sqrt{3}<a≤4$,
综上所述:a的取值范围$[-2\sqrt{3},4]$…(12分)

点评 本题考查了集合的运算,考查韦达定理以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知曲线C上的动点P到两定点O(0,0),A(3,0)的距离之比为$\frac{1}{2}$.
(1)求曲线C的方程;
(2)若直线l经过点(0,-2),且直线l交曲线C于A,B两点.以AB为直径的圆能否过坐标原点?若能求出直线l的方程,若不能说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$),且离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆E的方程;
(2)设O为坐标原点,若点A是椭圆上运动,且点A不在y轴上,点B在直线y=t上,且OA⊥OB,是否存在有序实数对(t,r)使得直线AB与圆O:x2+y2=r2总相切,若存在,求出所有满足题意的有序实数对(t,r);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若二项式($\frac{\sqrt{5}}{5}$x2+$\frac{1}{x}$)6的展开式中的常数项为m,则$\int_1^m$(2x2-4x)dx=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在区间($\frac{1}{2}$,3)上单调递减,则实数a的取值范围为(  )
A.($\frac{5}{2}$,$\frac{10}{3}$)B.($\frac{10}{3}$,+∞)C.[$\frac{10}{3}$,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=2$\sqrt{2}$,则C=$\frac{π}{4}$,则△ABC的面积为(  )
A.$2\sqrt{3}+2$B.$\sqrt{3}+1$C.$2\sqrt{3}-2$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=ax+x2-xlna(a>0且a≠1).若函数y=|f(x)-t|-1有三个零点,则t的值为(  )
A.1B.2C.3D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\frac{cosx}{{e}^{x}}$,则函数f(x)的图象在点(0,f(0))处的切线方程为(  )
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知不恒为零的函数f(x)=xlog2(ax+$\sqrt{a{x^2}+b}$)是偶函数.
(1)求a,b的值;
(2)求不等式f(x-2)<log2(1+$\sqrt{2}$)的解集.

查看答案和解析>>

同步练习册答案