精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在区间($\frac{1}{2}$,3)上单调递减,则实数a的取值范围为(  )
A.($\frac{5}{2}$,$\frac{10}{3}$)B.($\frac{10}{3}$,+∞)C.[$\frac{10}{3}$,+∞)D.[2,+∞)

分析 求出函数f(x)的导数,问题转化为a≥x+$\frac{1}{x}$在($\frac{1}{2}$,3)恒成立,令g(x)=x+$\frac{1}{x}$,x∈($\frac{1}{2}$,3),根据函数的单调性求出a的范围即可.

解答 解:∵函数f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1,
∴f′(x)=x2-ax+1,
若函数f(x)在区间($\frac{1}{2}$,3)上递减,
故x2-ax+1≤0在($\frac{1}{2}$,3)恒成立,
即a≥x+$\frac{1}{x}$在($\frac{1}{2}$,3)恒成立,
令g(x)=x+$\frac{1}{x}$,x∈($\frac{1}{2}$,3),
g′(x)=$\frac{(x+1)(x-1)}{{x}^{2}}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:x<1,
∴g(x)在($\frac{1}{2}$,1)递减,在(1,3)递增,
而g($\frac{1}{2}$)=$\frac{3}{2}$,g(3)=$\frac{10}{3}$,
故a≥$\frac{10}{3}$
故选:C.

点评 本题考查利用导数研究函数的单调性,考查恒成立问题的求解方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.连结正十二面体各面中心得到一个(  )
A.正六面体B.正八面体C.正十二面体D.正二十面体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.树德中学高一数学兴趣班某同学探究发现:△ABC的内角A,B,C所对的边为a,b,c;在△ABC中有以下结论:
①若ab>c2;则0<C<$\frac{π}{3}$;
②若a+b>2c;则0<C<$\frac{π}{3}$;
③若a,b,c成等比数列(即b2=ac),则0<B≤$\frac{π}{3}$;
④若a2,b2,c2成等比数列,亦有0<B≤$\frac{π}{3}$;
他留下了下面两个问题,请你完成:
(I)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);
(II)若a2,b2,c2成等差数列,求B的取值范围.
(参考公式:(1)x,y∈R,x2+y2≥2xy;(2)x,y∈R+,x+y≥2$\sqrt{xy}$;当且仅当x=y时取等)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=log2x在点A(1,2)处切线的斜率为  $\frac{1}{ln2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知不等式|x2-3x-4|<2x+2的解集为{x|a<x<b}.
(1)求a、b的值;
(2)若m,n∈(-1,1),且mn=$\frac{a}{b}$,S=$\frac{a}{{m}^{2}-1}$+$\frac{b}{3({n}^{2}-1)}$,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|-1<x<3},集合B={x|x2-ax+b<0,a,b∈R}.
(Ⅰ)若A=B,求a,b的值;
(Ⅱ)若b=3,且(A∩B)?B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}的前n项和为Sn=2n-1+k,则f(x)=x3-kx2-2x+1的极大值为(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图为一个求20个数的平均数的算法语句,在横线上应填充的是20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题正确的有①⑤.(填序号)
①若直线与平面有两个公共点,则直线在平面内;
②若直线l上有无数个点不在平面α内,则l∥α;
③若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;
④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;
⑤若直线l与平面α平行,则l与平面α内的直线平行或异面.

查看答案和解析>>

同步练习册答案