精英家教网 > 高中数学 > 题目详情
15.已知等比数列{an}的前n项和为Sn=2n-1+k,则f(x)=x3-kx2-2x+1的极大值为(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

分析 根据等比数列的性质求出k的值,从而求出f(x)的解析式,根据函数的单调性求出f(x)的极大值即可.

解答 解:根据Sn=2n-1+k,得到a1=k,Sn-1=2n-2+k,
∴an=Sn-Sn-1=(2n-1+k)-(2n-2+k)=2n-1-2n-2=2n-2(2-1)=2n-2,n≥2,
再根据{an}是等比数列,所以{an}是以$\frac{1}{2}$为首项,2为公比的等比数列,
则k的值为-$\frac{1}{2}$,
f(x)=x3+$\frac{1}{2}$x2-2x+1,
f′(x)=3x2+x-2=(3x-2)(x+1),
令f′(x)>0,解得:x>$\frac{2}{3}$或x<-1,
令f′(x)<0,解得:-1<x<$\frac{2}{3}$,
故f(x)在(-∞,-1)递增,在(-1,$\frac{2}{3}$)递减,在($\frac{2}{3}$,+∞)递增,
故f(x)的极大值是f(-1)=$\frac{5}{2}$.
故选:B.

点评 本题考查了函数的单调性、极值问题,考查等比数列的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}-x-1}$的单调递减区间是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知f(x)是一次函数,且满足f[f(x)]=4x+3,求函数f(x)的解析式;
(2)已知二次函数f(x)满足f(0)=2,f(x+1)-f(x)=2x-1对任意实数x都成立,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在区间($\frac{1}{2}$,3)上单调递减,则实数a的取值范围为(  )
A.($\frac{5}{2}$,$\frac{10}{3}$)B.($\frac{10}{3}$,+∞)C.[$\frac{10}{3}$,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设命题p:?x0>0,cosx0+sinx0>1,则¬p为(  )
A.?x>0,cosx+sinx>1B.?x0≤0,cosx0+sinx0≤1
C.?x>0,cosx+sinx≤1D.?x0>0,cosx0+sinx0≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=ax+x2-xlna(a>0且a≠1).若函数y=|f(x)-t|-1有三个零点,则t的值为(  )
A.1B.2C.3D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.满足条件$\left\{\begin{array}{l}{y-2x≤0}\\{x+y-3<0}\\{y>0}\end{array}\right.$ 的区域中共有整点的个数为(  )
A.1B.2C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),则tanα的值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{\sqrt{x+1}}{x-5}$的定义域为(  )
A.[-1,+∞)B.[-1,5)∪(5,+∞)C.[-1,5)D.(5,+∞)

查看答案和解析>>

同步练习册答案