精英家教网 > 高中数学 > 题目详情
5.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}-x-1}$的单调递减区间是[$\frac{1}{2}$,+∞).

分析 令t=x2-x-1,则y=${(\frac{1}{2})}^{t}$,本题即求函数t的增区间,再利用二次函数的性值可得结论.

解答 解:令t=x2-x-1=${(x-\frac{1}{2})}^{2}$+$\frac{3}{4}$,则y=${(\frac{1}{2})}^{t}$,本题即求函数t的增区间.
再利用二次函数的性值可得函数t的增区间为[$\frac{1}{2}$,+∞),
故答案为:[$\frac{1}{2}$,+∞).

点评 本题主要考查复合函数的单调性,指数函数、二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在等比数列{an}中,a2=4,a6=8a3
(1)求an
(2)令bn=log2an,求数列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在锐角△ABC中,角A、B、C所对的边分别是a、b、c,O为△ABC的外心.若b=2,则$\overrightarrow{AC}$•$\overrightarrow{AO}$=(  )
A.2B.4C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.连结正十二面体各面中心得到一个(  )
A.正六面体B.正八面体C.正十二面体D.正二十面体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.$GE=BD=2,EC=\frac{9}{5}$.
(1)求证:GE是⊙O的切线;
(2)求sin∠DCB值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和为Sn,若S10=1,S30=5,则S40=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用斜二测画法画一个周长为4的矩形的直观图,此直观图面积的最大值为(  )
A.$2\sqrt{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.树德中学高一数学兴趣班某同学探究发现:△ABC的内角A,B,C所对的边为a,b,c;在△ABC中有以下结论:
①若ab>c2;则0<C<$\frac{π}{3}$;
②若a+b>2c;则0<C<$\frac{π}{3}$;
③若a,b,c成等比数列(即b2=ac),则0<B≤$\frac{π}{3}$;
④若a2,b2,c2成等比数列,亦有0<B≤$\frac{π}{3}$;
他留下了下面两个问题,请你完成:
(I)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);
(II)若a2,b2,c2成等差数列,求B的取值范围.
(参考公式:(1)x,y∈R,x2+y2≥2xy;(2)x,y∈R+,x+y≥2$\sqrt{xy}$;当且仅当x=y时取等)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}的前n项和为Sn=2n-1+k,则f(x)=x3-kx2-2x+1的极大值为(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

同步练习册答案