| A. | $2\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
分析 在已知图形所在的空间中取水平平面,作X′轴,Y′轴使∠X′O′Y′=45°,然后依据平行投影的有关性质逐一作图.利用基本不等式求直观图面积的最大值.
解答
解:(1)在已知ABCD中取AB、AD所在边为X轴与Y轴,相交于O点(O与A重合),画对应X′轴,Y′轴使∠X′O′Y′=45°
(2)在X′轴上取A′,B′使A′B′=AB,在Y′轴上取D′,
使A′D′=$\frac{1}{2}$AD,过D′作D′C′平行X′的直线,且等于A′D′长.
(3)连C′B′所得四边形A′B′C′D′就是矩形ABCD的直观图.
设矩形的长、宽分别为a,b,则a+b=2≥2$\sqrt{ab}$,
∴ab≤1,∴直观图面积的最大值为a$•\frac{1}{2}b•\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{4}$.
故选D.
点评 本题考查平面图形的直观图的画法:斜二测画法,考查作图能力,属基础知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4项 | B. | 5项 | C. | 6项 | D. | 7项 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com