精英家教网 > 高中数学 > 题目详情
8.已知等比数列{an}中,a2+a5=18,a3•a4=32,若an=128,则n=8.

分析 利用等比数列的性质,a2•a5=a3•a4=32,以及a2+a5=18,联立求出a2与a5的值,求得公比q,再由通项公式得到通项,即可得出结论.

解答 解:∵数列{an}为等比数列,
∴a2•a5=a3•a4=32,又a2+a5=18,
∴a2=2,a5=16或a5=16,a2=2,
∴公比q=2或$\frac{1}{2}$,
则an=4•2n-3或8•($\frac{1}{2}$)n-3
∵an=128,∴n=8,
故答案为8.

点评 此题考查了等比数列的通项和性质,熟练掌握等比数列的性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知斜率为k(k≠0)的直线l交椭圆$\frac{{x}^{2}}{4}$+y2=1于M,N
(1)记直线OM,ON的斜率分别为k1,k2,当3(k1+k2)=8k时,求l经过的定点;
(2)若直线l过点D(1,0),△OMD与△OND的面积比为t,当k2<$\frac{5}{12}$时,t的取值范围是(n1,n2),n1,n2>1,若数列的通项公式为$\frac{1}{({n}_{2})^{n}-0.5{n}_{1}}$,μn为其前n项之和,求证:μn<log34.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=4,f(1)+g(-1)=8,则g(1)等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在锐角△ABC中,角A、B、C所对的边分别是a、b、c,O为△ABC的外心.若b=2,则$\overrightarrow{AC}$•$\overrightarrow{AO}$=(  )
A.2B.4C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若|x•(x-4)|=a有3个解,则a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.连结正十二面体各面中心得到一个(  )
A.正六面体B.正八面体C.正十二面体D.正二十面体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.$GE=BD=2,EC=\frac{9}{5}$.
(1)求证:GE是⊙O的切线;
(2)求sin∠DCB值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用斜二测画法画一个周长为4的矩形的直观图,此直观图面积的最大值为(  )
A.$2\sqrt{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知不等式|x2-3x-4|<2x+2的解集为{x|a<x<b}.
(1)求a、b的值;
(2)若m,n∈(-1,1),且mn=$\frac{a}{b}$,S=$\frac{a}{{m}^{2}-1}$+$\frac{b}{3({n}^{2}-1)}$,求S的最大值.

查看答案和解析>>

同步练习册答案