18£®ÒÑ֪бÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl½»ÍÖÔ²$\frac{{x}^{2}}{4}$+y2=1ÓÚM£¬N
£¨1£©¼ÇÖ±ÏßOM£¬ONµÄбÂÊ·Ö±ðΪk1£¬k2£¬µ±3£¨k1+k2£©=8kʱ£¬Çól¾­¹ýµÄ¶¨µã£»
£¨2£©ÈôÖ±Ïßl¹ýµãD£¨1£¬0£©£¬¡÷OMDÓë¡÷ONDµÄÃæ»ý±ÈΪt£¬µ±k2£¼$\frac{5}{12}$ʱ£¬tµÄȡֵ·¶Î§ÊÇ£¨n1£¬n2£©£¬n1£¬n2£¾1£¬ÈôÊýÁеÄͨÏʽΪ$\frac{1}{£¨{n}_{2}£©^{n}-0.5{n}_{1}}$£¬¦ÌnΪÆäǰnÏîÖ®ºÍ£¬ÇóÖ¤£º¦Ìn£¼log34£®

·ÖÎö £¨1£©ÁªÁ¢·½³Ì×飬ֱ½ÓÀûÓÃΤ´ï¶¨ÀíÇó½â£»
£¨2£©ÓÃk±íÊ¾Ãæ»ýÖ®±È£¬Çó³ötµÄ·¶Î§£¬Ó÷ÅËõ·¨Çó³öÊýÁÐÖ®ºÍ¼´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©ÒÀÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+n£¬ÆäÖÐk¡Ù0£®
´úÈëÍÖÔ²·½³ÌµÃ£º£¨1+4k2£©x2+8knx+4n2-4=0£¬
ÔòÓÐx1+x2=$-\frac{8kn}{1+4{k}^{2}}$£®        x1•x2=$\frac{4{n}^{2}-4}{1+4{k}^{2}}$¡­£¨2·Ö£©
Ôòk1•k2=$\frac{{y}_{1}}{{x}_{1}}+\frac{{y}_{2}}{{x}_{2}}=\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}}{{x}_{1}{x}_{2}}=\frac{{x}_{2}£¨k{x}_{1}+n£©+{x}_{1}£¨k{x}_{2}+n£©}{{x}_{1}{x}_{2}}$
=$\frac{2k{x}_{1}{x}_{2}+n£¨{x}_{1}+{x}_{2}£©}{{x}_{1}{x}_{2}}\\;\\;\\;=-\frac{8k}{4{n}^{2}-4}$=$\frac{8k}{4{n}^{2}-4}$-£®¡­£¨5·Ö£©
ÓÉÌõ¼þÓÐ-$\frac{24k}{4{n}^{2}-4}=8k$£¬¶øk¡Ù0£¬ÔòÓÐn=¡À$\frac{1}{2}$£¬
´Ó¶øÖ±Ïßl¹ý¶¨µã£¨0£¬$\frac{1}{2}$£©»ò£¨0£¬-$\frac{1}{2}$£©£®¡­£¨8·Ö£©
£¨2£©Ö¤Ã÷£ºÒÀÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÆäÖÐk¡Ù0£®
´úÈëÍÖÔ²·½³ÌµÃ£º£¨1+4k2£©x2-8k2x+4k2-4=0£¬
ÔòÓÐx1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$£®¡­x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$
´Ó¶øÓÐy1+y2=k£¨x1+x2£©=$\frac{2k}{1+4{k}^{2}}$-¡­¢Ù
y1y2=k2[x1x2-£¨x1+x2£©+1]=$-\frac{3{k}^{2}}{1+4{k}^{2}}$¡­¢Ú
ÓÉ¢Ù¢ÚµÃ$\frac{£¨{y}_{1}+{y}_{2}£©^{2}}{{y}_{1{y}_{2}}}=-\frac{4}{3£¨1+4{k}^{2}£©}$£¬¡­
ÓÉ$0£¼{k}^{2}£¼\frac{5}{12}$£¬µÃ-$\frac{4}{3}£¼-\frac{4}{3£¨1+4{k}^{2}£©}£¼-\frac{1}{2}$£®¡­
ÓÖt=$\frac{{s}_{¡÷0MD}}{{S}_{¡÷OND}}=\frac{{y}_{1}}{{y}_{2}}$£¬Òòy1y2£¼0£¬
¹Êt=-$\frac{{y}_{1}}{{y}_{2}}$£¬ÓÖ$\frac{{£¨y}_{1}+{y}_{2}£©^{2}}{{y}_{1}{y}_{2}}=\frac{{y}_{1}}{{y}_{3}}+\frac{{y}_{2}}{{y}_{1}}+2=-t-\frac{1}{t}+2$£¬
´Ó¶øÓÐ$-\frac{4}{3}£¼-t-\frac{1}{t}+2£¼-\frac{1}{2}$£¬µÃ$\left\{\begin{array}{l}{3{t}^{2}-10t+3£¼0}\\{2{t}^{2}-5t+2£¾0}\end{array}\right.$£¬
½âµÃ2£¼t£¼3»ò$\frac{1}{3}£¼t£¼\frac{1}{2}¡­£¨ÉáÈ¥£©$£®¡­£¨13·Ö£©
¡àÊýÁÐ$\frac{1}{£¨{n}_{2}£©^{n}-0.5{n}_{1}}$µÄͨÏʽΪ${a}_{n}=\frac{1}{{3}^{n}-1}$£¬
¡ß3n-1=3•3n-1-1=2•3n-1+3n-1-1
¡àn¡Ý1ʱ£¬${a}_{n}¡Ý\frac{1}{2•{3}^{n-1}}$£¬
ÆäǰnÏîÖ®ºÍ¦Ìn¡Ü$\frac{1}{2}•\frac{£¨1-\frac{1}{{3}^{n-1}}£©}{1-\frac{1}{3}}=\frac{3}{4}$£¬
¡à¦Ìn£¼log34µÃÖ¤£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢½âÎö¼¸ºÎÖеIJÎÊý·¶Î§ÎÊÌâ¡¢ÊýÁеķÅËõ·¨£¬ÊôÓÚѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=2sinxcos|x|£¨x¡ÊR£©£¬ÔòÏÂÁÐÐðÊö´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©µÄ×î´óÖµÊÇ1B£®f£¨x£©ÊÇÆæº¯Êý
C£®f£¨x£©ÔÚ[0£¬1]ÉÏÊÇÔöº¯ÊýD£®f£¨x£©ÊÇÒÔ¦ÐΪ×îСÕýÖÜÆÚµÄº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®xΪµÚÈýÏóÏ޽ǣ¬Ôò$\frac{{1+cos2x+4{{sin}^2}x}}{sin2x}$µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®2B£®$2\sqrt{2}$C£®$2\sqrt{3}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ºÐÖÐ×°ÓÐ5¸öÁã¼þ£¬ÆäÖÐÓÐ2¸ö´ÎÆ·£®ÏÖ´ÓÖÐËæ»ú³éÈ¡2¸ö£¬ÔòÇ¡ÓÐ1¸ö´ÎÆ·µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{7}{10}$B£®$\frac{1}{2}$C£®$\frac{3}{5}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®²»µÈʽ$\frac{3x-2}{4x+3}¡Ý0$µÄ½â¼¯ÊÇ£¨-¡Þ£¬$-\frac{3}{4}$£©¡È[$\frac{2}{3}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖª$\frac{b}{a+c}=1-\frac{sinC}{sinA+sinB}$£¬ÇÒ$b=5£¬\overrightarrow{CA}•\overrightarrow{CB}=-5$£¬
£¨¢ñ£©Çó¡÷ABCµÄÃæ»ý£®
£¨¢ò£©ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²î²»ÎªÁ㣬Èôa1cosA=1£¬ÇÒa2£¬a4£¬a8³ÉµÈ±ÈÊýÁУ¬Áî${b_n}=\frac{a_n}{2^n}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃm+1¡ÜTn£¼m+3¶ÔÈÎÒâÕýÕûÊýnºã³ÉÁ¢£»Èô´æÔÚ£¬ÇómµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éè a£¾b£¬Ôòʹ$\frac{1}{a}£¾\frac{1}{b}$³ÉÁ¢µÄÒ»¸ö³äÒªÌõ¼þÊÇ£¨¡¡¡¡£©
A£®b£¼0£¼aB£®0£¼a£¼bC£®b£¼a£¼0D£®-1£¼b£¼0£¼a£¼1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬µãPµ½Á½µã£¨0£¬-$\sqrt{3}$£©£¬£¨0£¬$\sqrt{3}$£©µÄ¾àÀëÖ®ºÍµÈÓÚ4£¬ÉèµãPµÄ¹ì¼£ÎªC£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©¹ýµã£¨0£¬$\sqrt{3}$£©×÷Ö±ÏßlÓëÇúÏßC½»ÓÚµãA¡¢B£¬ÒÔÏß¶ÎABΪֱ¾¶µÄÔ²ÄÜ·ñ¹ý×ø±êÔ­µã£¬ÈôÄÜ£¬Çó³öÖ±ÏßlµÄ·½³Ì£¬Èô²»ÄÜÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a2+a5=18£¬a3•a4=32£¬Èôan=128£¬Ôòn=8£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸