·ÖÎö £¨1£©ÁªÁ¢·½³Ì×飬ֱ½ÓÀûÓÃΤ´ï¶¨ÀíÇó½â£»
£¨2£©ÓÃk±íÊ¾Ãæ»ýÖ®±È£¬Çó³ötµÄ·¶Î§£¬Ó÷ÅËõ·¨Çó³öÊýÁÐÖ®ºÍ¼´¿ÉµÃÖ¤£®
½â´ð ½â£º£¨1£©ÒÀÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+n£¬ÆäÖÐk¡Ù0£®
´úÈëÍÖÔ²·½³ÌµÃ£º£¨1+4k2£©x2+8knx+4n2-4=0£¬
ÔòÓÐx1+x2=$-\frac{8kn}{1+4{k}^{2}}$£® x1•x2=$\frac{4{n}^{2}-4}{1+4{k}^{2}}$¡£¨2·Ö£©
Ôòk1•k2=$\frac{{y}_{1}}{{x}_{1}}+\frac{{y}_{2}}{{x}_{2}}=\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}}{{x}_{1}{x}_{2}}=\frac{{x}_{2}£¨k{x}_{1}+n£©+{x}_{1}£¨k{x}_{2}+n£©}{{x}_{1}{x}_{2}}$
=$\frac{2k{x}_{1}{x}_{2}+n£¨{x}_{1}+{x}_{2}£©}{{x}_{1}{x}_{2}}\\;\\;\\;=-\frac{8k}{4{n}^{2}-4}$=$\frac{8k}{4{n}^{2}-4}$-£®¡£¨5·Ö£©
ÓÉÌõ¼þÓÐ-$\frac{24k}{4{n}^{2}-4}=8k$£¬¶øk¡Ù0£¬ÔòÓÐn=¡À$\frac{1}{2}$£¬
´Ó¶øÖ±Ïßl¹ý¶¨µã£¨0£¬$\frac{1}{2}$£©»ò£¨0£¬-$\frac{1}{2}$£©£®¡£¨8·Ö£©
£¨2£©Ö¤Ã÷£ºÒÀÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÆäÖÐk¡Ù0£®
´úÈëÍÖÔ²·½³ÌµÃ£º£¨1+4k2£©x2-8k2x+4k2-4=0£¬
ÔòÓÐx1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$£®¡x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$
´Ó¶øÓÐy1+y2=k£¨x1+x2£©=$\frac{2k}{1+4{k}^{2}}$-¡¢Ù
y1y2=k2[x1x2-£¨x1+x2£©+1]=$-\frac{3{k}^{2}}{1+4{k}^{2}}$¡¢Ú
ÓÉ¢Ù¢ÚµÃ$\frac{£¨{y}_{1}+{y}_{2}£©^{2}}{{y}_{1{y}_{2}}}=-\frac{4}{3£¨1+4{k}^{2}£©}$£¬¡
ÓÉ$0£¼{k}^{2}£¼\frac{5}{12}$£¬µÃ-$\frac{4}{3}£¼-\frac{4}{3£¨1+4{k}^{2}£©}£¼-\frac{1}{2}$£®¡
ÓÖt=$\frac{{s}_{¡÷0MD}}{{S}_{¡÷OND}}=\frac{{y}_{1}}{{y}_{2}}$£¬Òòy1y2£¼0£¬
¹Êt=-$\frac{{y}_{1}}{{y}_{2}}$£¬ÓÖ$\frac{{£¨y}_{1}+{y}_{2}£©^{2}}{{y}_{1}{y}_{2}}=\frac{{y}_{1}}{{y}_{3}}+\frac{{y}_{2}}{{y}_{1}}+2=-t-\frac{1}{t}+2$£¬
´Ó¶øÓÐ$-\frac{4}{3}£¼-t-\frac{1}{t}+2£¼-\frac{1}{2}$£¬µÃ$\left\{\begin{array}{l}{3{t}^{2}-10t+3£¼0}\\{2{t}^{2}-5t+2£¾0}\end{array}\right.$£¬
½âµÃ2£¼t£¼3»ò$\frac{1}{3}£¼t£¼\frac{1}{2}¡£¨ÉáÈ¥£©$£®¡£¨13·Ö£©
¡àÊýÁÐ$\frac{1}{£¨{n}_{2}£©^{n}-0.5{n}_{1}}$µÄͨÏʽΪ${a}_{n}=\frac{1}{{3}^{n}-1}$£¬
¡ß3n-1=3•3n-1-1=2•3n-1+3n-1-1
¡àn¡Ý1ʱ£¬${a}_{n}¡Ý\frac{1}{2•{3}^{n-1}}$£¬
ÆäǰnÏîÖ®ºÍ¦Ìn¡Ü$\frac{1}{2}•\frac{£¨1-\frac{1}{{3}^{n-1}}£©}{1-\frac{1}{3}}=\frac{3}{4}$£¬
¡à¦Ìn£¼log34µÃÖ¤£®
µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢½âÎö¼¸ºÎÖеIJÎÊý·¶Î§ÎÊÌâ¡¢ÊýÁеķÅËõ·¨£¬ÊôÓÚѹÖáÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨x£©µÄ×î´óÖµÊÇ1 | B£® | f£¨x£©ÊÇÆæº¯Êý | ||
| C£® | f£¨x£©ÔÚ[0£¬1]ÉÏÊÇÔöº¯Êý | D£® | f£¨x£©ÊÇÒÔ¦ÐΪ×îСÕýÖÜÆÚµÄº¯Êý |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | $2\sqrt{2}$ | C£® | $2\sqrt{3}$ | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{7}{10}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{3}{5}$ | D£® | $\frac{1}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | b£¼0£¼a | B£® | 0£¼a£¼b | C£® | b£¼a£¼0 | D£® | -1£¼b£¼0£¼a£¼1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com