精英家教网 > 高中数学 > 题目详情
4.设sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),则tanα的值为-$\frac{3}{4}$.

分析 由已知利用同角三角函数基本关系式可求cosα,进而可求tanα的值.

解答 解:∵sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=$\frac{\frac{3}{5}}{-\frac{4}{5}}$=-$\frac{3}{4}$.
故答案为:-$\frac{3}{4}$.

点评 本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.树德中学高一数学兴趣班某同学探究发现:△ABC的内角A,B,C所对的边为a,b,c;在△ABC中有以下结论:
①若ab>c2;则0<C<$\frac{π}{3}$;
②若a+b>2c;则0<C<$\frac{π}{3}$;
③若a,b,c成等比数列(即b2=ac),则0<B≤$\frac{π}{3}$;
④若a2,b2,c2成等比数列,亦有0<B≤$\frac{π}{3}$;
他留下了下面两个问题,请你完成:
(I)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);
(II)若a2,b2,c2成等差数列,求B的取值范围.
(参考公式:(1)x,y∈R,x2+y2≥2xy;(2)x,y∈R+,x+y≥2$\sqrt{xy}$;当且仅当x=y时取等)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}的前n项和为Sn=2n-1+k,则f(x)=x3-kx2-2x+1的极大值为(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图为一个求20个数的平均数的算法语句,在横线上应填充的是20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.关于x不等式(x2-x)(ex-1)>0的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-1≤0\\ y≤2\end{array}\right.$,那么z=x2+y2的最小值为(  )
A.5B.4C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A,B是椭圆C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左右顶点,P是异于A,B的椭圆上一点,.
( 1 )求P到定点Q(0,1)的最大值;
(2)设PA,PB的斜率为k1,k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题正确的有①⑤.(填序号)
①若直线与平面有两个公共点,则直线在平面内;
②若直线l上有无数个点不在平面α内,则l∥α;
③若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;
④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;
⑤若直线l与平面α平行,则l与平面α内的直线平行或异面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知sin(α+π)=-$\frac{1}{3}$,则sin(2α+$\frac{π}{2}$)=$\frac{7}{9}$.

查看答案和解析>>

同步练习册答案