分析 (1)设P(x,y),由条件运用两点的距离公式,化简整理,即可得到所求轨迹方程;
(2)若以AB为直径的圆能过坐标原点,则直线l的斜率存在,设为k,直线方程为y=kx-2,联立直线方程和与的方程,利用$\overrightarrow{OA}•\overrightarrow{OB}=0$求得k,则答案可求.
解答 解:(1)设P(x,y),由题意可得$\frac{|OP|}{|PA|}=\frac{1}{2}$,![]()
即为2$\sqrt{{x}^{2}+{y}^{2}}=\sqrt{(x-3)^{2}+{y}^{2}}$,
化简可得x2+y2+2x-3=0,
曲线C的方程为圆(x+1)2+y2=4;
(2)如图,若以AB为直径的圆能过坐标原点,则直线l的斜率存在,设为k,直线方程为y=kx-2.
联立$\left\{\begin{array}{l}{y=kx-2}\\{{x}^{2}+{y}^{2}+2x-3=0}\end{array}\right.$,消去y得(1+k2)x2-(4k-2)x+1=0.
△=(4k-2)2-4(1+k2)=4k2-3k>0,得k<0或k>$\frac{3}{4}$.
设A(x1,y1),B(x2,y2),
则${x}_{1}+{x}_{2}=\frac{4k-2}{1+{k}^{2}},{x}_{1}{x}_{2}=\frac{1}{1+{k}^{2}}$,
${y}_{1}{y}_{2}=(k{x}_{1}-2)(k{x}_{2}-2)={k}^{2}{x}_{1}{x}_{2}-2k({x}_{1}+{x}_{2})+4$=$\frac{{k}^{2}}{1+{k}^{2}}-\frac{8{k}^{2}-4k}{1+{k}^{2}}+4=\frac{-3{k}^{2}+4k+4}{1+{k}^{2}}$.
若以AB为直径的圆能否过坐标原点,则x1x2+y1y2=$\frac{1}{1+{k}^{2}}+\frac{-3{k}^{2}+4k+4}{1+{k}^{2}}=\frac{-3{k}^{2}+4k+5}{1+{k}^{2}}=0$.
即3k2-4k-5=0,解得${k}_{1}=\frac{2-\sqrt{19}}{3}$,或${k}_{2}=\frac{2+\sqrt{19}}{3}$.
∴以AB为直径的圆能过坐标原点,此时直线l的方程为$y=\frac{2-\sqrt{19}}{3}x-2$或$y=\frac{2+\sqrt{19}}{3}x-2$.
点评 本题考查曲线方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.024 | B. | 0.036 | C. | 0.06 | D. | 0.6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |PF1|+|PF2|>10 | B. | |PF1|+|PF2|<10 | C. | |PF1|+|PF2|≥10 | D. | |PF1|+|PF2|≤10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com